

Andrei Kazantsev Max Planck Institute for Radio Astronomy

Generative Adversarial Networks

Human Neuron Researches

Jan Evangelista Purkyně (1787 – 1869)

Camillo Golgi (1843 – 1926)

Nobel Prize in Physiology or Medicine 1906 "in recognition of their work on the structure of the nervous system"

1891

Neuron

Dendrites / (and a whole body, actually) receive a signal

© wikimedia.org

Human nervous system

Neurons are the fundamental structural and functional units of the **nervous system**.

The entire human brain contains 86 billion neurons

Neurons perform three main functions: **1.Sensory function (afferent neurons) 2.Integrative function (interneurons) 3.Motor function (efferent neurons)**

McCulloch, W.S., Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943). https://doi.org/10.1007/BF02478259

Activation Functions

Activation Functions

Training of a Perceptron

Walter Pitts (1923 – 1969)

© wikimedia.org

Warren Sturgis McCulloch (1898 – 1969)

McCulloch, W.S., Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943). https://doi.org/10.1007/BF02478259

Input

Training of a Perceptron via Gradient Descent of Loss Function

Frank Rosenblatt (1928 – 1971)

14

1958

Rosenblatt, F. (1958). "The perceptron: A probabilistic model for information storage and organization in the brain". Psychological Review. 65 (6): 386–408. doi:10.1037/h0042519.

15

We received from the perceptron

We were expecting to receive

```
Loss Function
We received from the perceptron
                    Error
                               N
                      We were expecting to receive
```

18

$L(y, \hat{y}) = y - \hat{y}$

$L(y, \hat{y}) = E_{\hat{x} \sim P_g}[D(\hat{x})] - E_{x \sim P_r}[D(x)] + \lambda E_{x \sim P_r}[(\|\nabla_{\tilde{x}} D(\tilde{x})\|_2 - 1)^2]$

$L(y, \hat{y}) = E_{\hat{x} \sim P_g}[D(\hat{x})] - E_{x \sim P_r}[D(x)] + \lambda E_{x \sim P_r}[(\|\nabla_{\tilde{x}} D(\tilde{x})\|_2 - 1)^2]$

© wikimedia.org

Inp

ut

Impact on Output with no Change in Data

The Perceptron

Marvin Minsky (1927 – 2016)

Seymour Papert (1928 – 2016)

Α	В	A AND B	A OR B	A XOR B
0	0	1	0	0
1	0	0	1	1
0	1	0	1	1
1	1	1	1	0

Truth table for the logical functions AND, OR, and XOR.

Linearly Separable Classes

 $x = x_1 w_1 + x_2 w_2 + \dots + x_n w_n = \sum_{i=1}^n x_i w_i$

У

Marvin Minsky (1927 - 2016)

Seymour Papert (1928 - 2016)

Α	В	A AND B	A OR B	A XOR B
0	0	1	0	0
1	0	0	1	1
0	1	0	1	1
1	1	1	1	0

Truth table for the logical functions AND, OR, and XOR.

Linearly Separable Classes

Marvin Minsky (1927 – 2016)

Seymour Papert (1928 – 2016)

Α	В	A AND B	A OR B	A XOR B
0	0	1	0	0
1	0	0	1	1
0	1	0	1	1
1	1	1	1	0

Truth table for the logical functions AND, OR, and XOR.

Linearly Separable Classes

Marvin Minsky (1927 – 2016)

Seymour Papert (1928 – 2016)

Α	В	A AND B	A OR B	A XOR B
0	0	1	0	0
1	0	0	1	1
0	1	0	1	1
1	1	1	1	0

Truth table for the logical functions AND, OR, and XOR.

Linearly Separable Classes

 $x = x_1 w_1 + x_2 w_2 + \dots + x_n w_n = \sum_{i=1}^n x_i w_i$

Marvin Minsky (1927 – 2016)

Seymour Papert (1928 – 2016)

Α	В	A AND B	A OR B	A XOR B
0	0	1	0	0
1	0	0	1	1
0	1	0	1	1
1	1	1	1	0

Truth table for the logical functions AND, OR, and XOR.

Linearly non-Separable Classes

 $x = x_1 w_1 + x_2 w_2 + \dots + x_n w_n = \sum_{i=1}^n x_i \overline{w_i}$

Hidden Layers and First Al Winter

Backpropagation and Novel Prize

Hopfield Network Diagram with Three Neurons

John Hopfield (1933 -) Geoffrey Hinton (1947 -)

Backpropagation

Backpropagation

@3blue1brown

Artificial Neural Networks

Artificial Neural Networks

Second Al Winter

A frame from the TV series *Friends* (© Warner Bros. Television).
Astronomy, Astrophysics, Al

THE ASTRONOMICAL JOURNAL

VOLUME 103, NUMBER 1

JANUARY 1992

AUTOMATED STAR/GALAXY DISCRIMINATION WITH NEURAL NETWORKS

S. C. ODEWAHN, E. B. STOCKWELL, R. L. PENNINGTON, R. M. HUMPHREYS, AND W. A. ZUMACH Department of Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 Received 12 June 1991; revised 29 August 1991

ABSTRACT

We discuss progress in the development of automatic star/galaxy discriminators for processing images generated by the University of Minnesota Automated Plate Scanner (APS) for cataloging the first epoch Palomar Sky Survey. Classifications are based on 14 image parameters computed for each object detected by the APS operating in a threshold densitometry mode. It is shown that a number of parameter spaces formed with these vector elements are effective in separating a sample into the two basic populations of stellar and nonstellar objects. An artificial intelligence technique known as a neural network is employed to perform the image classification. We have experimented with a simple linear classifier known as a perceptron, as well as with a more sophisticated backpropagation neural network with the result that we are able to attain classification success rates of 99% for galaxy images with $B \leq 18.5$ and above 95% for the magnitude range $18.5 \leq B \leq 19.5$. The analysis presented here uses a training dataset consisting of 2665 galaxies and 2082 stars, along with a test sample of 936 galaxies and 2378 stars. We have determined the success rate of these classifiers as a function of image diameter and

Odewahn, S.C., et al. (1992). Automated Star/Galaxy Discrimination with Neural Networks. In: MacGillivray, H.T., Thomson, E.B. (eds) Digitised Optical Sky Surveys. Astrophysics and Space Science Library, vol 174. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2472-0_28

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

ImageNet Image Catalog (14,000,000 images, 20,000 classes)

Error Rate Curve of Classifiers ---- average error rate for humans)

Generative Networks

		Δ

·3

Variational Autoencoders (VAE)	Generative Adversarial Networks (GAN)	Autoregressive Models	Normalizing Flows	Energy-Based Models (EBM)	Diffusion Models
β-VAE	CycleGAN	WaveNet	Glow	JEM	DALL-E 2
VAE-GAN	StyleGAN	PixelRNN/	RealNVP	DBN	Stable Diffusion
DeepMind's VQ-VAE	BigGAN	PixelCNN	FFJORD		

What is a Generative Model?

What is a Generative Model?

Aperture

Optical System

Mount Type

Aperture Optical System Mount Type

 $\bullet \bullet \bullet$

 $\bullet \bullet \bullet$

 $\bullet \bullet \bullet$

How Can We Describe Everything?

Parameter 1 Parameter 2 Parameter 3

•••

Latent Space

Parameter 1

a lower-dimensional space that captures the essential features of the data

Latent Space

Parameter 1

a lower-dimensional space that captures the essential features of the data

Latent Space

Parameter 1

a lower-dimensional space that captures the essential features of the data

Parameter 1

54

Parameter 2

Parameter 1

Parameter 2

Parameter 1

56

Parameter 2

Parameter 1

(〔)

Parameter 2

Parameter 1

(〔)

Parameter 2

Parameter 1

59

Parameter 2

Universal Approximation Theorem (UAT)

A neural network with at least one hidden layer and a sufficient number of neurons can approximate any continuous function with arbitrary precision, provided an appropriate activation function is used.

Limitations of the theorem: 1.Does not account for training speed 2.Ensures existence, but not construction 3.A single hidden layer may be inefficient

- Cybenko, G. Approximation by superpositions of a sigmoidal function. *Math. Control Signal Systems* 2, 303–314 (1989). https://doi.org/10.1007/BF02551274
- Hornik, K., Stinchcombe, M., & White, H. Multilayer feedforward networks are universal approximators. *Neural Networks* 2, 359–366 (1989). https://doi.org/10.1016/0893-6080(89)90020-8
- Funahashi, K.-I. On the approximate realization of continuous mappings by neural networks. Neural Networks 2, 183–192 (1989). https://doi.org/10.1016/0893-6080(89)90003-8

Universal Approximation Theorem (UAT)

A neural network with at least one hidden layer and a sufficient number of neurons can approximate any continuous function with arbitrary precision, provided an appropriate activation function is used.

Limitations of the theorem: 1.Does not account for training speed 2.Ensures existence, but not construction 3.A single hidden layer may be inefficient

- Cybenko, G. Approximation by superpositions of a sigmoidal function. *Math. Control Signal Systems* **2**, 303–314 (1989). https://doi.org/10.1007/BF02551274
- Hornik, K., Stinchcombe, M., & White, H. Multilayer feedforward networks are universal approximators. Neural Networks 2, 359–366 (1989). https://doi.org/10.1016/0893-6080(89)90020-8
- Funahashi, K.-I. On the approximate realization of continuous mappings by neural networks. Neural Networks 2, 183–192 (1989). https://doi.org/10.1016/0893-6080(89)90003-8

Real data

Reconstructed data

Image Blurring Due to MSE Optimization

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

69

ImageNet Image Catalog (14,000,000 images, 20,000 classes)

Error Rate Curve of Classifiers ---- average error rate for humans)

The Original GAN Paper

Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie^{*}, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair[†], Aaron Courville, Yoshua Bengio[‡] Département d'informatique et de recherche opérationnelle Université de Montréal Montréal, QC H3C 3J7

Abstract

We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model Gthat captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to $\frac{1}{2}$ everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.

Generator

Discriminator

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., et al. Generative adversarial networks. arXiv preprint (2014). https://doi.org/10.48550/arXiv.1406.2661

[stat.ML] 10 Jun 2014

Fake

Real

GAN Principle

Generator	Discriminator
55	Fake 59 Real 3116
Returns the data generated from the latent space	Returns the probability that the data is real
It has never seen any real data	It learns from real data
It strives to decrease D efficiency	It strives to increase its efficiency
$\min_{G} \max_{D} V(G, D)$	

Adversarial

Generator

Discriminator

 $\min_{G} \max_{D} V(G,D)$

Loss Function for GAN

Binary Cross-Entropy (BCE) is a loss function that measures the difference between predicted probabilities and true labels in a binary classification task.

$$BCE = -\frac{1}{n} \sum_{i=1}^{n} \left(Y_i \log \widehat{Y}_i + (1 - Y_i) \cdot \log(1 - \widehat{Y}_i) \right)$$

 Y_i — the true value for the i-th example (0 or 1)

 $\widehat{Y_i}$ — the predicted probability by the model of belonging to class 1 (a value between 0 and 1)

Loss Function for GAN

Training Instability

 $w_{new} = w_{old} - \varepsilon \cdot \nabla L(w_{old})$

Learning rate

Mode collapse

Figure 2 from¹. Generated images by GAN models trained on MNIST after 1,100k,500k,1000k iterations.

¹Mi, L., Shen, M., & Zhang, J. A probe towards understanding GAN and VAE models. arXiv preprint (2018). https://doi.org/10.48550/arXiv.1812.05676

Conditional GAN (cGAN)

Figure 1 from¹: Conditional adversarial net

1. Ξ. 3 3 9 2 2 2 2 \boldsymbol{q} ÷. - ŞŦ

Figure 2 from¹: Generated MNIST digits, each row conditioned on one label

Pix2Pix (Image-to-image translation with conditional¹⁰² adversarial networks)

Figure 8 from¹: Example results on Google Maps at 512x512 resolution (model was trained on images at 256 × 256 resolution, and run convolutionally on the larger images at test time). Contrast adjusted for clarity.

Pix2Pix (Image-to-image translation with conditional¹⁰³ adversarial networks)

Figure 14 from¹: Example results of our method on facades labels \rightarrow photo, compared to ground truth.

Pix2Pix (Image-to-image translation with conditional adversarial networks)

Figure 2 from¹: Training a conditional GAN to map edges \rightarrow photo.

Figure 16 from¹: Example results of our method on automatically detected edges \rightarrow handbags, compared to ground truth.

Pix2Pix (Image-to-image translation with conditional¹⁰⁵ adversarial networks)

by Mario Klingemann

Figure 11 from¹: Example applications developed by online community based on our pix2pix codebase

CycleGAN (Unpaired image-to-image translation 106 using cycle-consistent adversarial networks)

Zebras C Horses

Summer C Winter

Figure 1 from¹

CycleGAN (Unpaired image-to-image translation ¹⁰⁷ using cycle-consistent <u>adversarial networks</u>)

CycleGAN (Unpaired image-to-image translation ¹⁰⁸ using cycle-consistent adversarial networks)

Figure 10 from¹ :Collection style transfer I: transfer input images into the artistic styles of Monet, Van Gogh, Cezanne, and Ukiyo-e.

CycleGAN (Unpaired image-to-image translation ¹⁰⁹ using cycle-consistent adversarial networks)

Figure 10 from¹:Collection style transfer I: transfer input images into the artistic styles of Monet, Van Gogh, Cezanne, and Ukiyo-e.

StyleGAN

Figure 1 (b) from¹. Style-based generator

Figure 2 from¹. Uncurated set of images produced by our stylebased generator (config F) with the FFHQ dataset.

¹Karras, T., Laine, S., & Aila, T. A style-based generator architecture for generative adversarial networks. *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019)*, 4401–4410. https://doi.org/10.1109/CVPR.2019.00453
Туре	Authors [Ref]	Year	Model	Application
3 D object generation	Yu Y.et al. (Yu et al., 2020)	2020	GAN Point encoder	Processes unstructured data with no labelling
	Y Chen et al. (Chen et al., 2018)	2018	3D-CNN	Create sharp images of good quality
	G Ye et al. (Ye et al., 2020)	2020	Deep learning-based GAN	Improving 2D monochromatic images
	Q Ma et al. (Ma et al., 2020)	2020	Generative 3D model	Human motion capturing
	Y Jin et al. (Jin et al., 2020)	2020	GAN model with three-tier adversarial principle	Production of high-quality 3D objects
Medicine	S Baek et al. (Baek et al., 2020)	2020	GAN and Mesh Model	Production of MR Images in sealed pixels
	Jain D K et al. (Jain et al., 2020)	2020	GAN poser	Detection of human motion
	A Teramoto et al. (Teramoto et al., 2020)	2020	Deep convolutional neural network (DCCN) with GAN	Classify cytological images
	M D Cirillo et al. (Cirillo et al., 2020)	2020	Vox2Vox: 3D-GAN	Brain tumour segmentation
	H C Shin et al. (Shin et al., 2018)	2018	Conventional GAN	Identify medical images
	J. Islam et al. (Islam & Zhang, 2020)	2020	Conventional GAN	Brain image generation
	H Lan et al. (Lan & Toga, 2020)	2020	SC-GAN	NeuroImage synthesis
	G Zhaoa (Zhaoa, 2020)	2020	Bayesian Conditional GAN	MRI Brain Image Synthesis
	R Oulbacha et al. (Oulbacha & Kadoury, 2020)	2020	Pseudo-3D Cycle GAN	MRI to CT Synthesis of the Lumbar Spine
	X Zhang et al. (X. Zhang et al., 2020)	2020	Deform-GAN	Noise reduction in 3D medical images
	D Yang et al. (Yang et al., 2019)	2019	Adversarial image-to-image networks	Medical image synthesis and semantic segmentation
Pandemics	Loey M et al. (Loey et al., 2020)	2020	GAN and deep transfer learning	COVID-19 detection with chest images
	S Albahli (Albahli, 2020)	2020	GAN with the deep neural network model	Diagnose coronavirus disease pneumonia
Image	C Li et al. (Li & Wand, 2016)	2016	Markovian GAN	Generate 3D image from 2D image
processing	H Zhou et al. (Zhou et al., 2020)	2020	Dual GAN	Recovering of high-resolution images
	T Go et al. (Go et al., 2020)	2020	Deep neural network-based GAN	Perform image transformation
	S Zhang et al. (S. Zhang et al., 2020)	2020	Conventional GAN	Image denoising
	H Tang et al. (Tang et al., 2020)	2020	Conventional GAN	Semantic guided scene generation
Face detection	F Mokhayeri et al. (Mokhayeri et al., 2020)	2020	A new Controllable GAN (C-GAN	Cross-domain face synthesis
	J Zhao et al. (Zhao et al., 2019)	2019	Dual-Agent Generative Adversarial Network (DA-GAN)	Unconstrained Face Recognition
	M Kowalski et al. (Kowalski et al., 2020)	2020	Deep learning-based GAN	Face Image Generation
	D P Jaiswal et al. (Jaiswal et al., 2020)	2020	Conventional GAN	Face animation
Text	L Sixt et al. (Sixt et al., 2019)	2019	Conventional GAN	Generating realistic labelled data
transferring	R Spick et al. (Spick et al., 2020)	2020	3D-GAN	Generate high-quality texture by adding colour
Traffic control	D Xu et al. (Xu et al., 2020)	2020	GE-GAN	Road traffic estimation
	Fathi-Kazerooni S et al. (Beery et al., 2020)	2020	GAN Tunnel	Detection of traffic images

Table 1 from¹. Key studies that define different GAN applications.

Туре	Authors [Ref]	Year	Model	Application
3 D object generation	Yu Y.et al. (Yu et al., 2020)	2020	GAN Point encoder	Processes unstructured data with no labelling
	Y Chen et al. (Chen et al., 2018)	2018	3D-CNN	Create sharp images of good quality
	G Ye et al. (Ye et al., 2020)	2020	Deep learning-based GAN	Improving 2D monochromatic images
	Q Ma et al. (Ma et al., 2020)	2020	Generative 3D model	Human motion capturing
	Y Jin et al. (Jin et al., 2020)	2020	GAN model with three-tier adversarial principle	Production of high-quality 3D objects
Medicine	S Baek et al. (Baek et al., 2020)	2020	GAN and Mesh Model	Production of MR Images in sealed pixels
	Jain D K et al. (Jain et al., 2020)	2020	GAN poser	Detection of human motion
	A Teramoto et al. (Teramoto et al., 2020)		e di trata trata di	
	M D Cirillo et al. (Cirillo et al., 2020) H C Shin et al. (Shin et al., 2018) J. Islam et al. (Islam & Zhang, 2020)	I	dentify medi	cal images
	H Lan et al. (Lan & Toga, 2020)	2020	SC-GAN	Neuroimage synthesis
	G Zhaoa (Zhaoa, 2020)	2020	Bayesian Conditional GAN	MRI Brain Image Synthesis
	R Oulbacha et al. (Oulbacha & Kadoury, 2020)	2020	Pseudo-3D Cycle GAN	MRI to CT Synthesis of the Lumbar
				Spine
	X Zhang et al. (X. Zhang et al., 2020)	2020	Deform-GAN	Noise reduction in 3D medical images
	D Yang et al. (Yang et al., 2019)	2019	Adversarial image-to-image networks	Medical image synthesis and semantic segmentation
Pandemics	Loey M et al. (Loey et al., 2020)	2020	GAN and deep transfer learning	COVID-19 detection with chest images
	S Albahli (Albahli, 2020)	2020	GAN with the deep neural network model	Diagnose coronavirus disease pneumonia
Image	C Li et al. (Li & Wand, 2016)	2016	Markovian GAN	Generate 3D image from 2D image
processing	H Zhou et al. (Zhou et al., 2020)	2020	Dual GAN	Recovering of high-resolution images
	T Go et al. (Go et al., 2020)	2020	Deep neural network-based GAN	Perform image transformation
	S Zhang et al. (S. Zhang et al., 2020)	2020	Conventional GAN	Image denoising
	H Tang et al. (Tang et al., 2020)	2020	Conventional GAN	Semantic guided scene generation
Face detection	F Mokhayeri et al. (Mokhayeri et al., 2020)	2020	A new Controllable GAN (C-GAN	Cross-domain face synthesis
	J Zhao et al. (Zhao et al., 2019)	2019	Dual-Agent Generative Adversarial Network (DA-GAN)	Unconstrained Face Recognition
	M Kowalski et al. (Kowalski et al., 2020)	2020	Deep learning-based GAN	Face Image Generation
	D P Jaiswal et al. (Jaiswal et al., 2020)	2020	Conventional GAN	Face animation
Text	L Sixt et al. (Sixt et al., 2019)	2019	Conventional GAN	Generating realistic labelled data
transferring	R Spick et al. (Spick et al., 2020)	2020	3D-GAN	Generate high-quality texture by
				adding colour
Traffic control	D Xu et al. (Xu et al., 2020)	2020	GE-GAN	Road traffic estimation
control	Fathi-Kazerooni S et al. (Beery et al. 2020)	2020	GAN Tunnel	Detection of traffic images

Table 1 from¹. Key studies that define different GAN applications.

3 D object generation Yu Y.et al. (Yu et al., 2020) 2020 GAN Point encoder Processes unstructured data we labelling Y Chen et al. (Chen et al., 2018) 2018 3D-CNN Create sharp images of good of G Ye et al. (Ye et al., 2020) Deep learning-based GAN Improving 2D monochromatic Human motion capturing V Dedicine S Baek et al. (Baek et al., 2020) 2020 GAN model with three-tier adversarial principle Production of high-quality 3D Medicine S Baek et al. (lain et al., 2020) 2020 GAN and Mesh Model Production of MR Images in so pixels Iain D K et al. (lain et al., 2020) 2020 GAN poser Detection of human motion	
Y Chen et al. (Chen et al., 2018) 2018 3D-CNN Create sharp images of good	vith no
G Ye et al. (Ye et al., 2020) 2020 Deep learning-based GAN Improving 2D monochromatic Q Ma et al. (Ma et al., 2020) 2020 Generative 3D model Human motion capturing Y Jin et al. (Jin et al., 2020) 2020 GAN model with three-tier adversarial Production of high-quality 3D Medicine S Baek et al. (Baek et al., 2020) 2020 GAN and Mesh Model Production of MR Images in s Jin D K et al. (lain et al., 2020) 2020 GAN poser Detection of human motion	quality
Q Ma et al. (Ma et al., 2020) 2020 Generative 3D model Human motion capturing Y Jin et al. (Jin et al., 2020) 2020 GAN model with three-tier adversarial principle Production of high-quality 3D Medicine S Baek et al. (Baek et al., 2020) 2020 GAN and Mesh Model Production of MR Images in spixels Iain D K et al. (lain et al., 2020) 2020 GAN poser Detection of human motion	images
Y Jin et al. (Jin et al., 2020) 2020 GAN model with three-tier adversarial principle Production of high-quality 3D Medicine S Baek et al. (Baek et al., 2020) 2020 GAN and Mesh Model Production of MR Images in s pixels Iain D K et al. (lain et al., 2020) 2020 GAN poser Detection of human motion	
Medicine S Baek et al. (Baek et al., 2020) 2020 GAN and Mesh Model Production of MR Images in september of pixels Jain D K et al. (Jain et al. 2020) 2020 GAN poser Detection of human motion	objects
Jain D K et al. (Jain et al. 2020) 2020 GAN poser Detection of human motion	ealed
A Teramoto et al. (Teramoto et al., 2020) 2020 Deep convolutional neural network Classify cytological images (DCCN) with GAN	
M D Cirillo et al. (Cirillo et al., 2020) 2000 - Venture 20-CAN	-
H C Shin et al. (Shin et al., 2018)	
J. Islam et al. (Islam & Zhang, 2020)	-
H Lan et al. (Lan & Toga, 2020) 2 DI dIII IIII d XC XCIICI dLIO	
G Zhaoa, (Zhaoa, 2020)	
R Oulbacha et al. (Oulbacha & Kadoury, 2020) 👘 🕹 کونون 🖛 کونون کې دېږېد کېږې د کې	indai
X Zhang et al. (X. Zhang et al., 2020) 2020 Deform-GAN Noise reduction in 3D medica	l images
D Yang et al. (Yang et al., 2019) 2019 Adversarial image-to-image networks Medical image synthesis and segmentation	semantic
Pandemics Loey M et al. (Loey et al., 2020) 2020 GAN and deep transfer learning COVID-19 detection with ches	st images
S Albahli (Albahli, 2020) 2020 GAN with the deep neural network Diagnose coronavirus disease model pneumonia	
Image C Li et al. (Li & Wand, 2016) 2016 Markovian GAN Generate 3D image from 2D i	mage
processing H Zhou et al. (Zhou et al., 2020) 2020 Dual GAN Recovering of high-resolution	images
T Go et al. (Go et al., 2020) 2020 Deep neural network-based GAN Perform image transformation	1 -
S Zhang et al. (S. Zhang et al., 2020) 2020 Conventional GAN Image denoising	
H Tang et al. (Tang et al., 2020) 2020 Conventional GAN Semantic guided scene genera	ation
Face detection F Mokhayeri et al. (Mokhayeri et al., 2020) 2020 A new Controllable GAN (C-GAN Cross-domain face synthesis	
J Zhao et al. (Zhao et al., 2019) 2019 Dual-Agent Generative Adversarial Unconstrained Face Recognition Network (DA-GAN)	on
M Kowalski et al. (Kowalski et al. 2020) 2020 Deep learning-based GAN Face Image Generation	
D P Jaiswal et al. (Jaiswal et al., 2020) 2020 Conventional GAN Face animation	
Text L Sixt et al. (Sixt et al., 2019) 2019 Conventional GAN Generating realistic labelled d	lata
transferring R Spick et al. (Spick et al., 2020) 2020 3D-GAN Generate high-quality texture adding colour	by
Traffic control D Xu et al (Xu et al 2020) 2020 CE-CAN Brad traffic estimation	
Table Control D Ad Can, 2007 2020 CAN Tunnel Detection of traffic images	

Table 1 from¹. Key studies that define different GAN applications.

Туре	Authors [Ref]	Year	Model	Application		
3 D object generation	Yu Y.et al. (Yu et al., 2020)	2020	GAN Point encoder	Processes unstructured data with no labelling		
0	Y Chen et al. (Chen et al., 2018)	2018	3D-CNN	Create sharp images of good quality		
	G Ye et al. (Ye et al., 2020)	2020	Deep learning-based GAN	Improving 2D monochromatic images		
	Q Ma et al. (Ma et al., 2020)	2020	Generative 3D model	Human motion capturing		
	Y Jin et al. (Jin et al., 2020)	2020	GAN model with three-tier adversarial principle	Production of high-quality 3D objects		
Medicine	S Baek et al. (Baek et al., 2020)	2020	GAN and Mesh Model	Production of MR Images in sealed pixels		
	Jain D K et al. (Jain et al., 2020)	2020	GAN poser	Detection of human motion		
	A Teramoto et al. (Teramoto et al., 2020)	2020	Deep convolutional neural network (DCCN) with GAN	Classify cytological images		
	M D Cirillo et al. (Cirillo et al., 2020)	2020	Vox2Vox: 3D-GAN	Brain tumour segmentation		
	H C Shin et al. (Shin et al., 2018)	2018	Conventional GAN	Identify medical images		
	J. Islam et al. (Islam & Zhang, 2020)	2020	Conventional GAN	Brain image generation		
	H Lan et al. (Lan & Toga, 2020)	2020	SC-GAN	NeuroImage synthesis		
	G Zhaoa (Zhaoa, 2020)	2020	Bayesian Conditional GAN	MRI Brain Image Synthesis		
	R Oulbacha et al. (Oulbacha & Kadoury, 2020)	2020	Pseudo-3D Cycle GAN	MRI to CT Synthesis of the Lumbar Spine		
	X Zhang et al. (X. Zhang et al., 2020) D Yang et al. (Yang et al., 2019)	····	egimentation			
Pandemics	Loev M et al. (Loev et al., 2020)	6	OVID-19 det	ection with a	chest	images
	S Albahli (Albahli, 2020)			cetton mini		mages
Image	C Li et al (Li & Wand 2016)	2016	Markovian CAN	Concrete 2D image from 2D image		
nrocessing	H Zhou et al. ($Thou$ et al. 2010)	2010		Recovering of high-resolution images		
processing	T Go et al. (Go et al., 2020)	2020	Deep neural network-based GAN	Perform image transformation		
	S Zhang et al. (S. Zhang et al., 2020)	2020	Conventional GAN	Image denoising		
	H Tang et al. (Tang et al., 2020)	2020	Conventional GAN	Semantic guided scene generation		
Face detection	F Mokhayeri et al. (Mokhayeri et al., 2020)	2020	A new Controllable GAN (C-GAN	Cross-domain face synthesis		
	J Zhao et al. (Zhao et al., 2019)	2019	Dual-Agent Generative Adversarial Network (DA-GAN)	Unconstrained Face Recognition		
	M Kowalski et al. (Kowalski et al., 2020)	2020	Deep learning-based GAN	Face Image Generation		
	D P Jaiswal et al. (Jaiswal et al., 2020)	2020	Conventional GAN	Face animation		
Text	L Sixt et al. (Sixt et al., 2019)	2019	Conventional GAN	Generating realistic labelled data		
transferring	R Spick et al. (Spick et al., 2020)	2020	3D-GAN	Generate high-quality texture by adding colour		
Traffic control	D Xu et al. (Xu et al., 2020)	2020	GE-GAN	Road traffic estimation		
	Fathi-Kazerooni S et al. (Beery et al., 2020)	2020	GAN Tunnel	Detection of traffic images		

Table 1 from¹. Key studies that define different GAN applications.

Туре	Authors [Ref]	Year	Model	Application	
3 D object generation	Yu Y.et al. (Yu et al., 2020)	2020	GAN Point encoder	Processes unstructured data with no labelling	
0	Y Chen et al. (Chen et al., 2018)	2018	3D-CNN	Create sharp images of good quality	
	G Ye et al. (Ye et al., 2020)	2020	Deep learning-based GAN	Improving 2D monochromatic images	
	Q Ma et al. (Ma et al., 2020)	2020	Generative 3D model	Human motion capturing	
	Y Jin et al. (Jin et al., 2020)	2020	GAN model with three-tier adversarial principle	Production of high-quality 3D objects	
Medicine	S Baek et al. (Baek et al., 2020)	2020	GAN and Mesh Model	Production of MR Images in sealed pixels	
	Jain D K et al. (Jain et al., 2020)	2020	GAN poser	Detection of human motion	
	A Teramoto et al. (Teramoto et al., 2020)	2020	Deep convolutional neural network (DCCN) with GAN	Classify cytological images	
	M D Cirillo et al. (Cirillo et al., 2020)	2020	Vox2Vox: 3D-GAN	Brain tumour segmentation	
	H C Shin et al. (Shin et al., 2018)	2018	Conventional GAN	Identify medical images	
	J. Islam et al. (Islam & Zhang, 2020)	2020	Conventional GAN	Brain image generation	
	H Lan et al. (Lan & Toga, 2020)	2020	SC-GAN	NeuroImage synthesis	
	G Zhaoa (Zhaoa, 2020)	2020	Bayesian Conditional GAN	MRI Brain Image Synthesis	
	R Oulbacha et al. (Oulbacha & Kadoury, 2020)	2020	Pseudo-3D Cycle GAN	MRI to CT Synthesis of the Lumbar Spine	
	X Zhang et al. (X. Zhang et al., 2020)	2020	Deform-GAN	Noise reduction in 3D medical images	
	D Yang et al. (Yang et al., 2019)	2019	Adversarial image-to-image networks	Medical image synthesis and semantic segmentation	
Pandemics	Loey M et al. (Loey et al., 2020)				
	S Albahli (Albahli, 2020)			· · · · · ·	
		•	enerate 3D	image from 2D im:	зœе
Image	C Li et al. (Li & Wand, 2016)	- N	Junerate SD	mage nom 20 mm	ugu
processing	H Zhou et al. (Zhou et al., 2020)				
	T Go et al. (Go et al., 2020)	2020	Deep neural network-based GAN	Perform image transformation	
	S Zhang et al. (S. Zhang et al., 2020)	2020	Conventional GAN	Image denoising	
	H Tang et al. (Tang et al., 2020)	2020	Conventional GAN	Semantic guided scene generation	
Face detection	F Mokhayeri et al. (Mokhayeri et al., 2020)	2020	A new Controllable GAN (C-GAN	Cross-domain face synthesis	
	J Zhao et al. (Zhao et al., 2019)	2019	Dual-Agent Generative Adversarial Network (DA-GAN)	Unconstrained Face Recognition	
	M Kowalski et al. (Kowalski et al., 2020)	2020	Deep learning-based GAN	Face Image Generation	
	D P Jaiswal et al. (Jaiswal et al., 2020)	2020	Conventional GAN	Face animation	
Text	L Sixt et al. (Sixt et al., 2019)	2019	Conventional GAN	Generating realistic labelled data	
transferring	R Spick et al. (Spick et al., 2020)	2020	3D-GAN	Generate high-quality texture by adding colour	
Traffic control	D Xu et al. (Xu et al., 2020)	2020	GE-GAN	Road traffic estimation	
	Fathi-Kazerooni S et al. (Beery et al., 2020)	2020	GAN Tunnel	Detection of traffic images	

Table 1 from¹. Key studies that define different GAN applications.

Applications of GAN in Astronomy

16

Figure 14 from¹. The standard deviation of the 21 cm brightness temperature map for each pixel over 1,024 image samples of the large-scale GAN (top), in comparison with the simulated images using 21cmFAST (bottom).

¹Diao, K., & Mao, Y. Multi-fidelity emulator for large-scale 21 cm lightcone images: a few-shot transfer learning approach with generative adversarial network. *arXiv preprint* (2025). https://doi.org/10.48550/arXiv.2502.04246

Applications of GAN in Astronomy

Figure 10 from¹. An example showing the the dark matter distribution field from an *N*-body simulation (left) and an emulation generated by Psi-GAN (centre), the difference map (right), showing the differences between the *N*-body simulation and the Psi-GAN emulation.

¹Bhambra, P., Joachimi, B., Lahav, O., et al. PSI-GAN: a power-spectrum-informed generative adversarial network for the emulation of large-scale structure maps across cosmologies and redshifts. *Monthly Notices of the Royal Astronomical Society*, **536**(3), 3138–3157 (2025). https://doi.org/10.1093/mnras/stae2810

Applications of GAN in Astronomy

GANDALF: Generative Adversaria Networks for Disentangling and Learning Framework

A frame from The Lord of the Rings: The Fellowship of the Ring (2001), directed by Peter Jackson, New Line Cinema.

Figure 1 from¹. The disentanglement architecture featuring multi-discriminators

¹Manteiga, M., Santoveña, R., Álvarez, M. A., et al. A method based on Generative Adversarial Networks (GANs) for disentangling atmospheric properties in astronomical spectra. *arXiv preprint* (2025). https://doi.org/10.48550/arXiv.2501.11762

The GAN is dead; long live the GAN!

The GAN is dead; long live the GAN! A Modern Baseline GAN

Yiwen Huang Brown University Aaron Gokaslan Cornell University

slan Volodymyr Kuleshov rsity Cornell University James Tompkin Brown University

Abstract

There is a widely-spread claim that GANs are difficult to train, and GAN architectures in the literature are littered with empirical tricks. We provide evidence against this claim and build a modern GAN baseline in a more principled manner. First, we derive a well-behaved regularized relativistic GAN loss that addresses issues of mode dropping and non-convergence that were previously tackled via a bag of ad-hoc tricks. We analyze our loss mathematically and prove that it admits local convergence guarantees, unlike most existing relativistic losses. Second, this loss allows us to discard all ad-hoc tricks and replace outdated backbones used in common GANs with modern architectures. Using StyleGAN2 as an example, we present a roadmap of simplification and modernization that results in a new minimalist baseline—R3GAN ("Re-GAN"). Despite being simple, our approach surpasses StyleGAN2 on FFHQ, ImageNet, CIFAR, and Stacked MNIST datasets, and compares favorably against state-of-the-art GANs and diffusion models. Code: https://www.github.com/brownvc/R3GAN

https://github.com/brownvc/R3GAN

Qualitative examples of sample generation from R3GAN on FFHQ-256

Huang, Y., Gokaslan, A., Kuleshov, V., & Tompkin, J. The GAN is dead; long live the GAN! A Modern GAN Baseline. arXiv preprint (2025). https://doi.org/10.48550/arXiv.2501.05441

Be the first!

ja) ads	;									
	QUICK FIELD:	Author First Auth	nor Abstract Yea	ar Fulltext	All Search Te	rms 🔹				
	abs:"R3GAN"								X	۹
		Show highlights	Show abstracts	Hide Sideba	ars				Go To Bottom	
	 Sorry no results were found for abs:"R3GAN" Try broadening your search Disable any filters that may be applied Check out some examples Read our help pages Not seeing something that should be here? Let us know! Leave Feedback									

Ethics and Limitations of Using Generative Models

1. Ethical Risks of Generative Models

- **Spread of misinformation**: Generative models can create fake texts, images, and videos, which threatens trust in information.
- **Copyright infringement**: Models can generate content that violates the rights of original creators.
- **Discrimination and bias**: Models can reproduce and amplify stereotypes present in the training data.

2. Limitations of Generative Models

- Lack of context understanding: Models don't have consciousness and may generate incorrect or harmful content.
- **Data dependency**: The quality of generation depends directly on the quality and representativeness of the training data.
- **High energy consumption**: Training and using generative models require significant computational resources, impacting the environment.

3. Responsible Use

- **Transparency**: Clearly indicate when content is created using AI.
- Quality control: Check generated content to ensure it meets ethical standards.
- **Regulation**: Develop and follow legal and ethical guidelines for AI use.

30dl SNDo × 07722112241

A Description of a state of the state of

27 10 2024

Sodi SNDo × 0772211224 Super New Discovered Object

A Construction of a statement of the statement of the

Sodi SNDo × 0772211224 Super New Discovered Object

A The second second balance is an experimental to the second s Second s Second se

Thank you for attention