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DISCLAIMER

and
OVERVIEW

▪ Disclaimer:

▪ This talk is a very subjective overview on the matter of Bayesian 

statistics and MCMC sampling

▪ It’s a loose collection of knowledge

▪ mostly “learning by doing”

▪ I tried to be more professional using lecture notes, “A Student’s 

guide to Bayesian Statistics” and a bunch of blog entries

▪ Overview

▪ Why do we need statistics after all, and what are we actually 

trying to do all day long?

▪ What’s the concept of Bayesian statistics, and is there more?

▪ Why do we need MCMC sampling?

▪ How can we understand samplers and use them efficiently?
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Why care for statistics?

▪ Astronomy/Astrophysics is unusual, because it is generally not an experimental science

➢ Can’t add carbon to a star and see what happens

▪ Improving our state of knowledge …

▪ … by incorporating new information into our physical models

▪ … do so via “plausible reasoning”

Astronomy: make general statements about the Universe,
   based on specific examples of its behaviour
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DEDUCTIVE REASONING

▪ if (B) is true, then (A) is true

if (A) is false, then (B) is false

▪ (A) is a logical consequence of (B) and (C)

BUT:

What can we say about (B) if (A) [and (C)] are true?

PLAUSIBLE REASONING 

▪ if (A) is true, then (B) is more plausible

if (B) is false, then (A) is less plausible

➢Basis of physical model building

➢NEED TO BRING THAT INTO MATHEMATICAL 

FORM

Types of reasoning

(A) Alcyone is within 
 200pc of Earth

(C) All stars within the Pleiades 
 are within 200pc of Earth

(B) Alcyone is a member 
 of the Pleiades Assume (C) is true 

→  “hypothesis space” 
        in which we are  
        reasoning
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BAYESIAN

▪ Logical reasoning that uses Bayes’ Theorem 

▪ Interpretation of  ‘probability’:

▪ ‘degree of belief’

▪ Number between 0 and 1 measuring the plausibility of a 

proposition when incomplete knowledge means we cannon 

know its truth or falsehood

▪ Both the youngest and oldest interpretation

▪ Original idea introduced by Laplace, Bernoulli and Bayes

▪ Eclipsed by ‘frequentist interpretation’ until it was put on 

firmer footing by Jeffreys (1939) and Jaynes (1950’s)

FREQUENTIST

▪ One attempt to remove the subjectivity from Bayesian 

statistics

▪ A frequentist equates probability to a limiting relative 

frequency

Rel. frequency (A) = events (A) / total number of tries

▪ Assumptions:

▪ All experiments are done under the same conditions

▪ Limit converges

▪ Past frequencies predict future frequencies

What kind of statistician are you?
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Bayesian or Frequentist?

Bayesian Frequentist

Model parameter Is a random variable Is not a random variable

Jargon Credibility interval; prior; posterior Confidence interval; p-value, significance

Goal Decide on an opinion to have, based on a 
prior belief

Decide on an action to take, compared to a 
default action

Pros Intuitive definitions of concepts Makes sense to talk about method quality 
and getting the answer right

Give up Lose ability to talk about right answers;
no such thing as statistically significant, or 
rejecting the null, only “more likely” and 
“less likely”

Core concepts are more difficult to 
understand and apply
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Bayesian or Frequentist?

➢Neither is better, they are two competing interpretations

➢Neither is more objective, both are based on assumptions

▪ “When you have a small sample, you should use Bayesian Statistics!”

▪ Frequentist approach is only usable with a sample size that is large enough

▪ it is possible to proceed with as little as one data point in the Bayesian approach

▪ only works because you use a lot of initial assumptions

▪ Statistics is not Alchemy! It’s not possible to gain more information by using a different interpretation.
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Bayesian inference – Bayes’ rule

𝑝 hypothesis data, 𝐼) =
𝑝 data hypothesis) × 𝑝 hypothesis 𝐼)

𝑝 data 𝐼)

Prior probability
❖ State of knowledge prior 

to acquiring the data

Likelihood
❖ model expected to describe the data
❖ Probability we would have seen what we 

saw, assuming the validity of the hypothesis

Evidence
❖ normalisation of the posterior
❖ Probability for a future data set 

given our choice of model

Posterior probability
❖ Probability of the 

hypothesis/model parameters 
given the observed data
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The likelihood

▪ What is the likelihood?

▪ probability model to approximate a real-world process

▪ represents the set of assumptions we make in our analysis

▪ Why is  𝑝(data|𝜃)   a “likelihood” and not “probability”?

▪ If we hold the parameters fixed, the resulting distribution of possible data samples is a valid PDF.

▪ Bayesian inference: keep the data fixed, let the model parameters vary → resulting distribution must not be a valid PDF.

➢ Emphasize this via: ℒ 𝜃 𝑑𝑎𝑡𝑎 = 𝑝 𝑑𝑎𝑡𝑎 𝜃

▪ How to choose the likelihood?

1. Evaluate the real-life behaviour the model should be capable of explaining & note down the necessary assumptions

2. Choose a suitable distribution function (e.g. Chapter 8, A Student’s guide to Bayesian Statistics)

3. AFTER FITTING: test the model’s ability to explain the data, and if necessary, choose a new model
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Example: PTA likelihood

▪ Which distribution do we expect?

▪ Model fit → describe the distribution of the residuals

▪ if our timing model is correct, the residuals should be distributed like a Gaussian around zero

ℒ ~exp
1

2
𝛿𝑡𝑇 𝑪−1 𝛿𝑡

▪ How are the residuals calculated?

𝛿𝑡 = റ𝑡𝑜𝑏𝑠 − റ𝑡𝑡ℎ𝑒𝑜 ≃ റ𝑡𝑜𝑏𝑠 −𝑴 റ𝜖 − റ𝑑 𝜃

▪ What is in the covariance matrix?

White Noise

RN, DM, 
chromatic noise

Common RN, 
GWB

P1

P2
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The prior

▪ What is the prior?

▪ Represents our pre-data uncertainty for a parameter’s true value

▪ Needs to be a valid probability distribution!

▪ Most controversial aspect of Bayesian statistics, due to their inherent subjectivity

▪ Why do we even need a prior?

▪ Bayes’ rule is only a way to update our initial belief in light of data → we must specify this initial belief

▪ Why can’t we use a unity prior (in general)?

▪ On the first sight, this sounds like a good idea, because it would apparently remove the criticized subjectivity

▪ But: unbound, continuous parameter: −∞
+∞

𝑝 𝜃 d𝜃 = ∞, and the prior must be a valid pdf!

▪ Construction of priors: uninformative & informative priors
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The posterior

▪ What is the posterior

▪ Golden goal of Bayesian inference

▪ PDF that allows us to calculate expectation values, credible intervals etc. for our model parameters given the data that 

we have observed

▪ Allows us to predict future data

▪ We have to ensure that it is a valid PDF! 
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The evidence

▪ What is the evidence?

▪ Denominator in Bayes’ rule

▪ Normalising factor: Likelihood is not a valid PDF, and thus the object likelihood x prior is equally none

   ensure that the integral over the posterior is 1 → normalise with all 𝜃 𝑝 data 𝜃 𝑝 𝜃 d𝜃

▪ Probability distribution: PDF for a future data set given our model, since 𝑝 𝑑𝑎𝑡𝑎 = all 𝜃 𝑝(data, 𝜃)d𝜃

▪ The problem with the evidence

▪ For relatively complex models, the computation of the integral becomes increasingly difficult

▪ Example: model the exam scores, where score𝑖𝑗  for  person 𝑖 in school 𝑗 is normally distributed as score𝑖𝑗 ~𝒩 𝜇𝑗 , 𝜎𝑗

𝑝 data = 𝜇1
𝜎1

𝜇100…
𝜎100

d𝜇1d𝜎1…d𝜇100d𝜎100 𝑝 data 𝜇1, 𝜎1, … , 𝜇100, 𝜎100 × 𝑝(𝜇1, 𝜎1, … , 𝜇100, 𝜎100)
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eValUAtE tHe EVidEnCE  ̂ _^

▪ Create a grid over the parameter space, calculate the posterior at each grid point

▪ properly realisable for discrete random variables, more difficult for continuous parameters

▪ Inefficient: area of parameter space that is relevant is likely small compared to the total grid

▪ not feasible for large dimensions, as the numerical expense grows exponentially with the number of dimensions

▪ conjugate priors

▪ Choose the prior such that, given your likelihood function, the posterior is in the same family of distributions

▪ https://en.wikipedia.org/wiki/Conjugate_prior 

▪ not really useful in practice…

Or is there something more clever?
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Integration via independent sampling

▪ Example:

▪ Mathematically speaking:  𝐸 𝑋 = ∞−
∞

𝑥 𝑝 𝑥 d𝑥 ≈
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖

▪ Generalise to ANY function g(X) 𝐸 𝑔(𝑋) = ∞−
∞

𝑔(𝑥) 𝑝 𝑥 d𝑥 ≈
1

𝑛
σ𝑖=1
𝑛 𝑔(𝑋𝑖)

▪ Generalise to ANY dimensionality 𝐸 𝑔(𝑋) = ∞−
∞

∞−
∞

∞−…
∞

𝑔 റ𝑥 𝑝 റ𝑥 d𝑥1d𝑥2…d𝑥𝑘 ≈
1

𝑛
σ𝑖=1
𝑛 𝑔(𝑋𝑖)        

Throw the 
die multiple 
times

Take  
sample 
mean 

Estimate 
the true 
mean

We can approximate multidimensional integrals like in Eq. (1),
as long as we can generate INDEPENDENT SAMPLES from the PDF

17



Monte Carlo simulation 

https://de.wikipedia.org/wiki/Monte-Carlo-
Simulation#/media/Datei:Pi_monte_carlo_all.svg

▪ use randomness to solve problems that might be deterministic 
by relying on repeated random sampling

▪ General procedure
1. define domain of possible inputs
2. generate random inputs from PDF over the domain
3. deterministic classification/computation of the outputs
4. aggregate results

▪ Main applications:
▪ optimisation
▪ numerical integration
▪ generating draws from a PDF
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Independent sampling

▪ Computers are deterministic machines → Random numbers are ALWAYS pseudo-random numbers

▪ Rejection sampling:  draw sample point (x,y) from the range of interest, accept if y < p(x)

▪ Inverse transform sampling:  sample x~Uniform(0,1), calculate y = CDF-1(x)

▪ What do we want our samples to look like?

▪
𝑝(𝜃𝐴|𝑑𝑎𝑡𝑎)

𝑝(𝜃𝐵|𝑑𝑎𝑡𝑎)
=

3

1
 → our sampler should generate 3 times more often from 𝜃𝐴 than from 𝜃𝐵

▪ Need only the relative height of the posterior, not the absolute

▪ Bayes Theorem revisited: 
𝑝(𝜃𝐴|𝑑𝑎𝑡𝑎)

𝑝(𝜃𝐵|𝑑𝑎𝑡𝑎)
=

ℒ 𝑑𝑎𝑡𝑎| 𝜃𝐴 ×𝑝(𝜃𝐴)

𝑝(𝑑𝑎𝑡𝑎)

ℒ 𝑑𝑎𝑡𝑎| 𝜃𝐵 ×𝑝(𝜃𝐵)

𝑝(𝑑𝑎𝑡𝑎)

=
ℒ 𝑑𝑎𝑡𝑎| 𝜃𝐵 ×𝑝(𝜃𝐵)

ℒ 𝑑𝑎𝑡𝑎| 𝜃𝐵 ×𝑝(𝜃𝐵)

➢ knowledge of the UNNORMALISED POSTERIOR is enough to determine the relative sampling frequency
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▪ Random Walk Metropolis

▪ Resulting series of parameter space points: “Markov chain”

▪ Effective sample size 

▪ Dependence of the sampler affects its ability of approximate the posterior

▪ Effective sample size = independent sample size that gives the same error rate as the dependent sample size

Dependent sampling

Choose a random 
point in the 

parameter space

uPDF(x+1) > uPDF(x)

uPDF(x+1) < uPDF(x)

propose step 
location

Calculate 
unnormalized  

PDF at that point
Stay at current 

location and look 
for new sample

Move to 
proposed point
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Tl;dr – MCMC sampling

incorporate information 
from an experiment into 

our theory:
BAYES THEOREM!

integrate via 
independent 

sampling:
MONTE CARLO

sufficient, that points 
are sampled with the 
appropriate relative 

frequency

dependent sampling: 
MARKOV CHAIN

calculate 
evidence in

 multiple 
dimensions

How do we get 
independent 
samples?

But we can’t evaluate

all relative frequencies
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MCMC in pseudo-code

1. Declare initial position 𝜃𝑖

2. Calculate unnomalised posterior at 𝜃𝑖: post(𝜃𝑖)

3. For 𝑁 iterations do:

1. draw new position 𝜃𝑖+1 from proposal distribution

2. calculate unnomalised posterior at 𝜃𝑖+1: post(𝜃𝑖+1)

3. draw random number 𝑢 between 0 and 1

4. if post(𝜃𝑖+1)/post 𝜃𝑖 > 𝑢 : move to 𝜃𝑖+1, else stay at 𝜃𝑖
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Sample algorithms

▪ Random Walk Metropolis: can only be used to sample from unconstrained parameter space

▪ Metropolis-Hastings: ensures that the MC never strays outside of the bounds of the parameter space

▪ Gibbs sampling simplification for multidimensional PDFs, if marginal distribution of one (or multiple)

       parameters is known

▪ Hamilton MC  uses Hamiltonian dynamics evolution to propose a new point

   reduces correlation between successive points

   No-U-Turn sampler (NUTS)

▪ …
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Jump proposals

▪ Proposal distribution = pdf that decides where to go next

▪ Gaussian: mean = current position, variance = “jump size”, yours to choose

▪ Jump proposals (next level)

▪ Adaptive Metropolis (AM)    Haario et al. 2001

      update Gaussian proposal distribution based on previous samples

      can be slow in large parameter spaces

▪ Single-Component Adaptive Metropolis (SCAM)  Haario et al. 2005

      only one correlated variable is updated in a proposal

      greatly improves mixing when running with many parameters

▪ Differential Evolution (DE)   Braak 2006

      move by difference of two previous, random points in the chain

      used if strong multimodal structures expected in the posterior

      

▪ Uncorrelated Jumps    typically draws from the prior distribution
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too large jump size

too small jump size

good jump size
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Assess your chain

▪ Convergence

▪ visual assessment of the chain

▪ Gelman-Rubin-R statistic

▪ Burn-in

▪ Autocorrelation length

▪ Sample n + 𝑖 is uncorrelated from the sample 𝑛

▪ Determine e.g. using the python package “acor”

▪ Thin the MCMC chain by the autocorrelation length to increase the effective sample size
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Beyond the simple MCMC

▪ Parallel tempering

▪ Problem: posterior distribution has deep local minima, but at large distances

▪ Solution:

▪ run multiple chains, flatten out the topology in each but one

▪ Flattening via exp
1

𝑇
𝐸 𝜃 ,

where 𝐸(𝜃) is the negative unnormalized log-posterior at position 𝜃

▪ Allow exchange between higher temperature chains and the lowest temperature

▪ Nested sampling

▪ used for model comparison

▪ allows for the evaluation of a Bayes factor via MCMC sampling 
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Take-away

▪ Literature:

▪ https://jellis18.github.io/post/2018-01-02-mcmc-part1/

▪ https://twiecki.io/blog/2015/11/10/mcmc-sampling/

▪ “A student’s guide to Bayesian statistics” (Ben Lambert)

▪ Popular python-based MCMC samplers

▪ Emcee

▪ PyMC

▪ Sampyl

▪ PTMCMC

▪ PolyChord

▪ dynesty

▪ Python analysis/plotting tools

▪ acor

▪ seaborn

▪ corner

▪ ChainConsumer
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