
GPUS
HOW AND WHEN TO USE

BACKGROUND

WHAT IS A GPU?

▸ Few processing cores

▸ Highly flexible

▸ Low latency, moderate throughput

▸ Many processing cores

▸ Limited flexibility

▸ High latency, High throughput

BACKGROUND

AMDAHL’S LAW

▸ The more of your problem that
is parallel the faster a GPU will
make it.

▸ The more data you have to
process, the more likely it is to
be paralleliseable.

▸ Good examples: FFTs, particle
simulations, linear algebra, etc.

▸ Bad examples: Unknown
problem in CS, does NC=P?

TUTORIAL

OVERVIEW

‣ In this tutorial you will learn:

‣ How to check the GPUs on a node

‣ How to write a CUDA kernel

‣ How GPU memory management works

‣ How CUDA threads, blocks and grids are arranged

‣ Memory access rules

‣ Tools that make it all easy

TUTORIAL

GLOSSARY

▸ Host: The server that hosts the GPU

▸ Device: The GPU accelerator card

▸ Kernel: A program that is executed by the GPU

▸ Profiler: A tool for measuring the performance of a piece
of code

� TUTORIAL

HELLO WORLD

▸ Log into Numerix0

▸ Add CUDA bin/ to PATH

▸ export PATH=$PATH:/usr/
local/cuda/bin/

▸ Make yourself a working
directory

▸ Run nvidia-smi to check GPUs

▸ Open editor of your choice…

� TUTORIAL

HELLO WORLD

https://cuda-tutorial.readthedocs.io/en/latest/tutorials/tutorial01/

nvcc -o hello_world hello_world.cu

https://cuda-tutorial.readthedocs.io/en/latest/tutorials/tutorial01/

� TUTORIAL

HELLO WORLD

https://cuda-tutorial.readthedocs.io/en/latest/tutorials/tutorial01/

Kernel

Function call

Function

Kernel launch

Execution space specifier
__host__, __device__ or __global__

https://cuda-tutorial.readthedocs.io/en/latest/tutorials/tutorial01/

TUTORIAL

GPU ASYNCHRONISITY

▸ Host and Device code are
asynchronous

▸ Good because GPU can do work at
the same time as CPU does work

▸ CUDA kernel launches return
immediately

▸ It is users responsibility to
synchronise and to check errors

▸ Do this using
cudaDeviceSynchronise()

� TUTORIAL

MEMORY MANAGEMENT

▸ new: Allocates memory on host

▸ cudaMalloc: Allocates memory on device

▸ cudaMemcpy: Copies data to/from host/device

▸ cudaFree: Free memory on the device

▸ delete: Free memory on the host

https://cuda-tutorial.readthedocs.io/en/latest/tutorials/tutorial01/

� TUTORIAL

ADDING TWO VECTORS

Worked example

https://cuda-tutorial.readthedocs.io/en/latest/tutorials/tutorial01/

TUTORIAL

▸ CUDA code can fail silently at runtime: VERY BAD, WTF IS HAPPENING,
WHY DOES IT NOT WORK!

▸ Users have responsibility to check for errors

▸ Many CUDA functions return cudaError_t values

▸ When error == cudaSuccess everything is good

▸ The rest of the time us cudaGetErrorString() to find out what went
wrong

▸ Copy /media/scratch/gpu-tutorial/examples/errors/error_checker.cu into
all your codes and use the CUDA_ERROR_CHECK macro.

ERROR HANDLING

� TUTORIAL

BENCHMARKING

▸ Use NVPROF (command line) or NVVP (GUI) to benchmark code

‣ Try testing the vector addition code…

TUTORIAL

CUDA ARCHITECTURE

▸ GPU has many processing threads available,
but they do not all work independently.

▸ Threads are mapped into blocks, which are
in turn mapped into grids.

▸ One grid per kernel

▸ Blocks and grids can be 3D (X, Y, Z indexing)

▸ We write general code that is parameterised
by the thread and block coordinates

▸ Groups of 32 threads (a warp) work in lock-
step

TUTORIAL

MEMORY HIERARCHY

▸ Different types of memory available
(fastest to slowest):

▸ Registers: 256 kB, thread local

▸ Shared memory: 64 kB, block local

▸ Constant memory: 64 KB, global,
read-only, broadcast

▸ Texture memory: Huge, global,
read-only, hardware interpolation

▸ Global memory: Huge, global

� TUTORIAL

MAPPING A CODE TO CUDA THREADS

‣ Which parts of the code are independent?

‣ Can the code be broken up into separate tasks?

‣ Can I do the most work possible per byte of memory at one time?

‣ Can I write code that doesn’t care how many threads or blocks I have?

https://cuda-tutorial.readthedocs.io/en/latest/tutorials/tutorial01/

� TUTORIAL

MAPPING A CODE TO CUDA THREADS

‣ How do I map the following?

‣ Clue: CUDA will tell me which thread is executing the code by the following variables:

‣ gridDim.x, gridDim.y, gridDim.z (how many blocks in each grid axis)

‣ blockIdx.x, blockIdx.y, blockIdx.z (the block index)

‣ blockDim.x, blockDim.y, blockDim.z (how many threads in each block axis)

‣ threadIdx.x, threadIdx.y, threadIdx.z (the block index)

‣ Consider only the X axis

https://cuda-tutorial.readthedocs.io/en/latest/tutorials/tutorial01/

TUTORIAL

MAPPING A CODE TO CUDA THREADS

▸ Here each thread does n_per_thread calculations

▸ Code works, but it has problems: unnecessary calculations, and a
uncoalesced memory access pattern

TUTORIAL

MEMORY ACCESS PATTERNS

▸ CUDA likes it when neighbouring threads read neighbouring data

▸ Threads in same half-warp (16 threads) should try to read data in 32-, 64- or 128-
byte aligned cache lane

▸ Can affect per performance

TUTORIAL

MAPPING A CODE TO CUDA THREADS

▸ Memory access is now coalesced (neighbouring threads access
neighbouring data)

▸ Threads still do multiple indices, but without unnecessary extra calculations

TUTORIAL

KERNEL LAUNCHING

▸ CUDA uses <<<>>> triple angle bracket notation for kernel launches

▸ Arguments are:

1. Grid dimensions

2. Block dimensions

3. Size of desired dynamic shared memory (optional)

4. Stream ID (optional)

▸ Dimensions can be described with a dim3 struct

▸ e.g. <<<dim3(4,4,4), dim3(5,5,5)>>> would give a 4 by 4 by 4 grid of blocks
(64), each with 5 by 5 by 5 threads (125)

▸ Maximum number of threads per block is 1024 (there are also limits for each
dimension and the same for blocks)

TUTORIAL

KERNEL LAUNCHING

▸ As we have written our vector_add code to be thread-
block agnostic, we can choose any combination of threads
and blocks (but only x-axis).

▸ vector_add<<<1024,128>>>(d_out, d_a, d_b, N);

▸ vector_add<<<dim3(1024,1,1), dim3(128,1,1)>>>(d_out, d_a, d_b, N);

▸ After the kernel call we can synchronise to wait for it to
finish (and we should check the error code returned)

▸ CUDA_ERROR_CHECK(cudaDeviceSynchronize());

TUTORIAL

TOOLS

▸ Lots of libraries for CUDA:

▸ Mathmatical functions with CUDA Math Library

▸ Fast Fourier Transforms with cuFFT

▸ Deep Neural Networks with cuDNN

▸ Linear algebra with cuBLAS, cuSPARSE, cuSOLVER and
cuTENSOR

▸ Random number generators with cuRAND

TUTORIAL

MAKING THINGS EASY

▸ Lots of high-level language abstractions:

▸ Thrust: C++ STL-like library that provides easy interface
for people already familiar with C++

▸ PyCUDA: Python wrappers for CUDA Driver API that
provide extensive functionality with the ability to embed
raw CUDA code that can be JIT compiled.

TUTORIAL

THRUST: VECTOR ADD

https://docs.nvidia.com/cuda/thrust/index.html

https://docs.nvidia.com/cuda/thrust/index.html

TUTORIAL

PYCUDA: VECTOR ADD

https://documen.tician.de/pycuda/tutorial.html

https://documen.tician.de/pycuda/tutorial.html

