The curious case of J1022+1001 Or How I learned to stop worrying and love MSP profile instabilities

The Pledge

- Discovered in the Arecibo declination strip survey by Camilo et al. in 1996
- 21 new pulsars discovered; 2 new MSPs including J1022+1001
- Unusual profile shape changes noticed in first few months of follow up.. Timescale of minutes
- Mass of companion > 0.73 solar masses
- IMBP; Mostly a CO WD

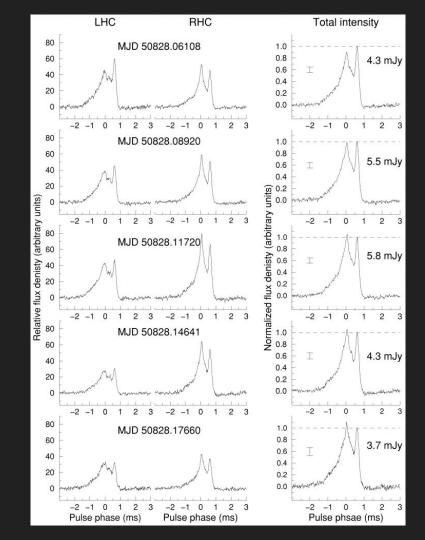
TABLE 4

PARAMETERS OF THE BINARY PULSARS

Parameter	PSR J0621+1002	PSR J1022+1001	
Right ascension, a (J2000)	06 21 22.1103(6)	10 22 58.06(6)	
Declination, δ (J2000)	$+10\ 02\ 38.79(4)$	$+10\ 01\ 54(3)$	
Period, P (ms)	28.85386072615(4)	16.452929681440(7)	
Period derivative, P	$< 8 \times 10^{-20}$	$4.2(3) \times 10^{-20}$	
Epoch of period (MJD)	49950.0	49780.0	
Dispersion measure (cm ⁻³ pc)	36.60(1)	10.25(1)	
Orbital period, P _b (days)	8.31867514(4)	7.80513015(1)	
Projected semimajor axis, x (s)	12.032077(5)	16.765411(2)	
Eccentricity, e	0.0024575(6)	$9.76(2) \times 10^{-5}$	
Longitude of periastron, ω (deg)	188.769(16)	97.54(15)	
Time of periastron, T ₀ (MJD)	49954.8334(4)	49778.4057(30)	

Optical counterpart discovered! (Lundgren et al. 1996) Discovered with HST; Mass of companion is 0.87

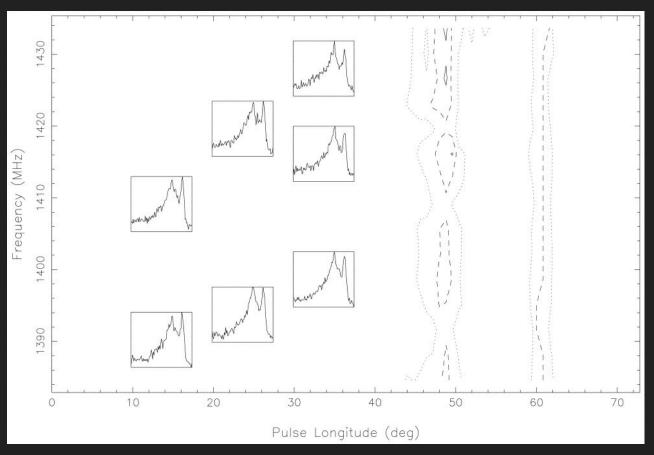
Photometry*


Table 2.

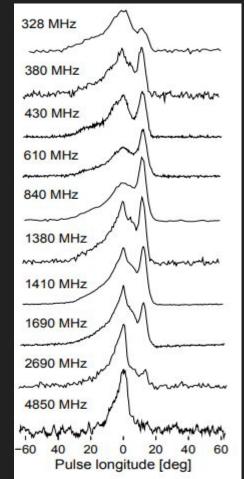
solar masses

Parameter	J0034-05	J1022+10	J1640 + 22	J1713+07	J2019+24	J2145-07
pos'n	587757			555572		2000
offset (")	0.6	1.0	0.8	0.5	0.3	0.9
mB	—	—		>27.1		23.89(11)
m_V	>26.8	23.09(4)	26.0(3)	26.0(2)	26.4(4)	23.70(10)
m_I	24.8(3)	22.665(7)	24.6(2)	24.1(1)	25.0(3)	22.97(7)
B-V	<u> </u>	<u> </u>	<u> </u>	>1.1		0.18(14)
V - I	>2.0	0.43(4)	1.4(4)	1.9(2)	< 1.1	0.73(10)
m - M	10.0(5)	8.9(5)	10.4(5)	10.2(5)	9.8(5)	8.5(5)
E_{B-V}	0.00(2)	0.00(2)	0.05(2)	0.08(2)	> 0.2	0.03(2)
T(K)	<3800	6925(200)	4200(300)	3700(100)	> 4500	5800(300)
$\log(L/L_{\odot})$	-4.2(2)	-3.8(2)	-3.8(2)	-3.8(2)	> -4.4	-4.1(2)
m_2/M_{\odot}	0.23(20)	0.83(25)	0.25(10)	< 0.32	0.6(3)	0.87(25)
tcool (Gyr)	>4.5	3.7(9)	7(2)	8(2)	< 8	5.5(7)
$P_i(ms)$	-	10(2)	>2.5(2)		> 3.2	10(2)
M/Medd		0.007(2)	0.005(1)		< 0.002	0.010(3)

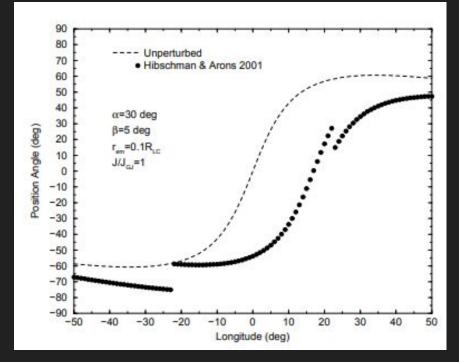
Profile highly unstable ! (Kramer et al. 1998)


- Profile changes across
 long time scales unlike
 moding
- Specific parts of profile vary ; implies intrinsic variability

- Linear Polarization stable but circular polarization changes sense - PA swing mostly S shaped; But has a notch!


Profile changes across frequency too. Order of every 8 MHZ

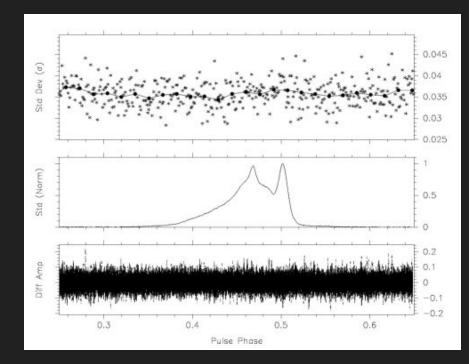
- Gaussian components fit to profile. 5 in number. Trailing component observed to be more stable than leading.
- Each component relates to a particular polarization feature
- Timing residuals despite fitting : 15-20 microseconds
- Proper motion measured : 50 km/s
- DM distance : 600 kpc
- Possibly magnetosphere effects?


Magnetospheric return currents: Ramachandran & Kramer 2003

- Observed with Westerbork ; thus no effect of parallactic angle on polarization calibration
- Reinstated what Kramer et al.
 1998 found w.r.t profile changes in frequency and time.
- No particular characteristic frequency and time scale of variations found.

2 possible explanations for PA 'jumps'.

- 2 polarisation emission modes; 2 different emission heights.
- 2) Polar cap current flowswhich shift PA upwards.Hibschman & Arons 2001

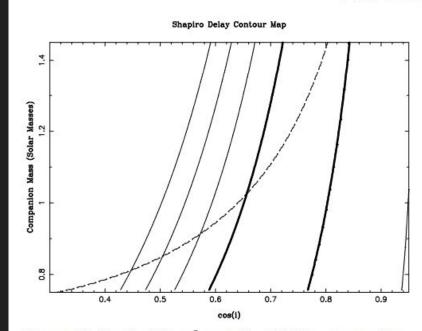


The Turn

J1022+1001 has no unusual behaviour whatsoever:

Hotan et al. 2004

xsProfile stable with time: New technique of flux normalisation and differencing amplitudes showed white noise like behaviour



Some other turns...

- It's a great timer; RMS of 2.27 microseconds.
- Parallax distance off from DM distance by half (300 pc)
- No characteristic BW dependence for profile variation.

Parameter	Value
Ecliptic Lon. (λ) (deg)	153.86589029 (4)
Ecliptic Lat. (β) (deg)	-0.06391 (6)
Proper Motion in λ (mas yr ⁻¹)	-17 (2) *
Parallax (mas)	3.3 (8)
Period (ms)	16.4529296931296 (5)
Period Derivative (10^{-20})	4.33 (1)
Period Epoch (MJD)	52900
Dispersion Measure $(cm^{-3}pc)$	10.25180 (7)
Projected Semi-Major Axis (lt-s)	16.7654148 (2)
Eccentricity	0.00009725(3)
Time of Periastron Passage (MJD)	52900.4619 (3)
Orbital Period (days)	7.805130160 (2)
Angle of Periastron (deg)	97.73 (1)
Right Ascension (α)	10:22:58.015 (5)
Declination (δ)	+10:01:53.2 (2)
Number of TOAS	555
Total χ^2	545.74
RMS Timing Residual (μs)	2.27
MJD of first TOA	52649
MJD of last TOA	53109
Total Time Span (days)	460

- Constrain on inclination angle through Shapiro delay contour map.
 37 < i <56
- Mass of WD > 0.9 solar masses
- Xdot measured

Figure 12. Shapiro delay χ^2 map. The thick lines represent 1- σ contours, followed by 2,3 and 4- σ contours on the left hand side. The dashed line represents the mass function constraint, assuming a 1.35 M_{\odot} neutron star.

The Prestige

Single pulse studies of J1022+1001 - Liu et al. 2015

- 14000 subpulses seen in 35 hour long observation time.
 Most seen in trailing component.
- The occurrence is correlated. Trailing component as preferred pulse width.
- 700 ns upper limit on jitter
- Polarization calibration cannot be sole reason for instability.

VLBI Measurements

Deller et al. 2016

- VLBI Measurement yields distance of approx. 700 pc.
- Shows that Timing model not perfect; possibly for not incorporating solar wind.
- Many parameters better constrained (Show tables in paper)