Pulsar of the week: 6 February 2019

PSRJ1757-1854

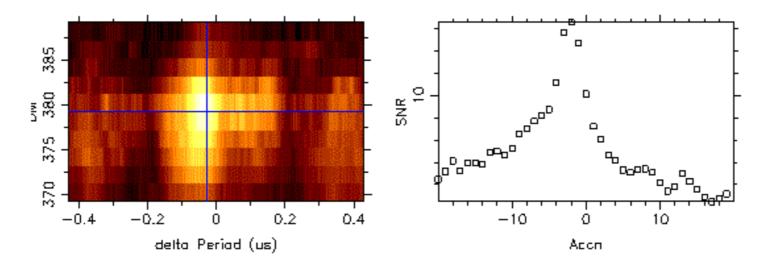
Vishnu Balakrishnan MPIfR

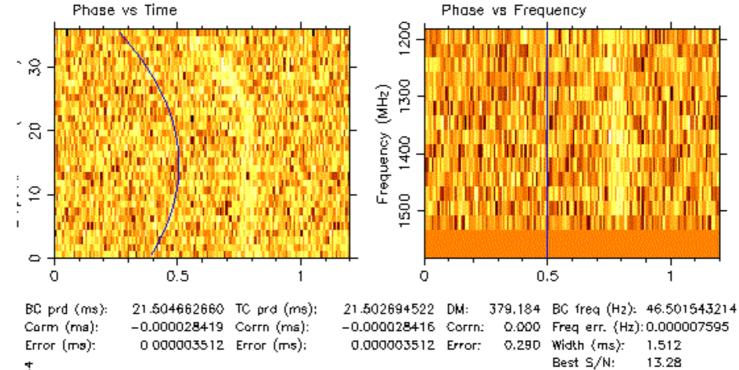
Highlights

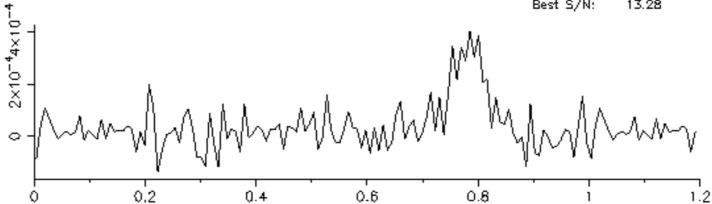
- * 21.49 ms Pulsar in a highly-eccentric (~0.6), 4.4-h orbit with a neutron star (NS) companion.
- Discovered in the HTRU South Low-Lat Survey by Dr. Andrew Cameron.
- * Shows highly relativistic effects due to gravitationalwave (GW) damping, with a merger time of 76 Myr.

$$m_p = 1.3384(9) M_{\odot}$$
 $m_c = 1.3946(9) M_{\odot}$

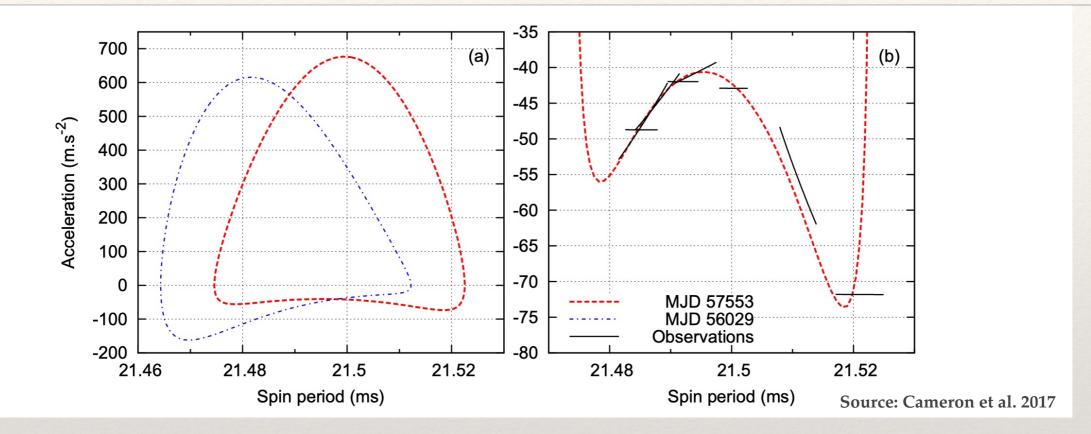
Discovery


Segment Amount. t_{int} (min) Min. P_b (hours) $ a_{max} $ (ms ⁻²)				
Full Half Quarter Eighth	$ \begin{array}{c} 1 \\ 2 \\ 4 \\ 8 \end{array} $	$72 \\ 36 \\ 18 \\ 9$	$12 \\ 6 \\ 3 \\ 1.5$	$egin{array}{c} 1 \\ 200 \\ 500 \\ 1200 \end{array}$

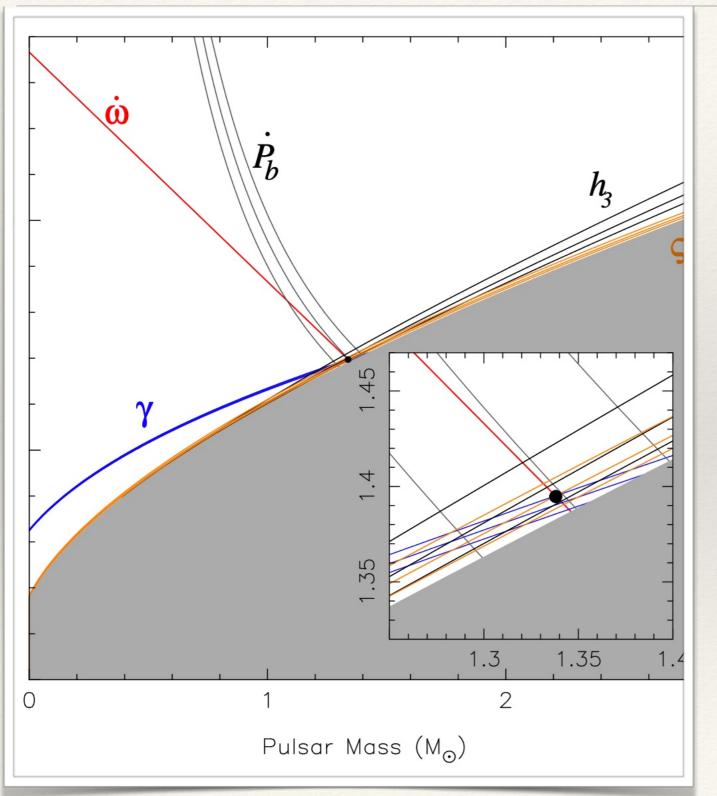

- Initially detected only in the second 36 minute half-segment at an acceleration of -32ms⁻² with SNR of 13.3.
- Acceleration search on 72 minute data recovered the signal with reduced SNR of 10.6.
- * Jerk search on 72 minute observation gave SNR of 21.4.


Discovery Plot

009-F2-S2150-p0: 2012-04-12-16:27:35-03_009-F2-S2150-p0.022-d379.2-a-31.89.ar2


BC P(ms)= 21.504691079 TC P(ms)= 21.502722938 DM= 379.184 RAJ= 17:57:10.80 DecJ= -18:49:34.9BC MJD = 56029 726282 Centre freq(MHz) = 1382.000 Bondwidth(MHz) = -400.1 = 10.045 b = 2.890 NBin = 128 NChan = 16 NSub = 32 TBin(ms) = 0.168 TSub(s) = 67.439 TSpan(s) = 2160.518 P(us): offset = 0.00000, step = 0.00167, range = 0.43000 DM: offset = 0.000, step = 2.000, range = 10.000

Follow-up Observations



- * Observations to map the orbit were done at Parkes, Effelsberg and Jodrell Bank telescopes.
- Interesting Fact: Pulsar not detected in multiple observations with standard acceleration techniques.
- Later found that observations happened during the orbit's periastron phase. (50-60 minute interval where acceleration value changed from negative values to ~+684 ms⁻²)

Measured parameters and implications

- Characteristic age T_c ~ 130 Myr.
- * Surface Magnetic Field $B_{surf} \sim 7.61 \times 10^9 G$
- * Five post-keplerian parameters measured.
 - * Rate of periastron advance: $\dot{\omega}$ Einstein delay : γ Orbital Period Derivative : \dot{P}_b Shapiro Parameters. : h_3, ς
- * New Records Set:
 - * Closest Binary Separation at periastron : $0.749R_{\odot}$
 - * Highest relative velocity at periastron : 1060kms⁻¹
 - * Highest value of \dot{P}_b and $\frac{\dot{P}_b}{P_b} = -3.33 \times 10^{-16} s^{-1}$

Testing General Relativity

Test 1

GR predicts: $\dot{P}_b = -5.2747(6) \times 10^{-12}$

Agrees with relative uncertainty of only 5%

Test 2

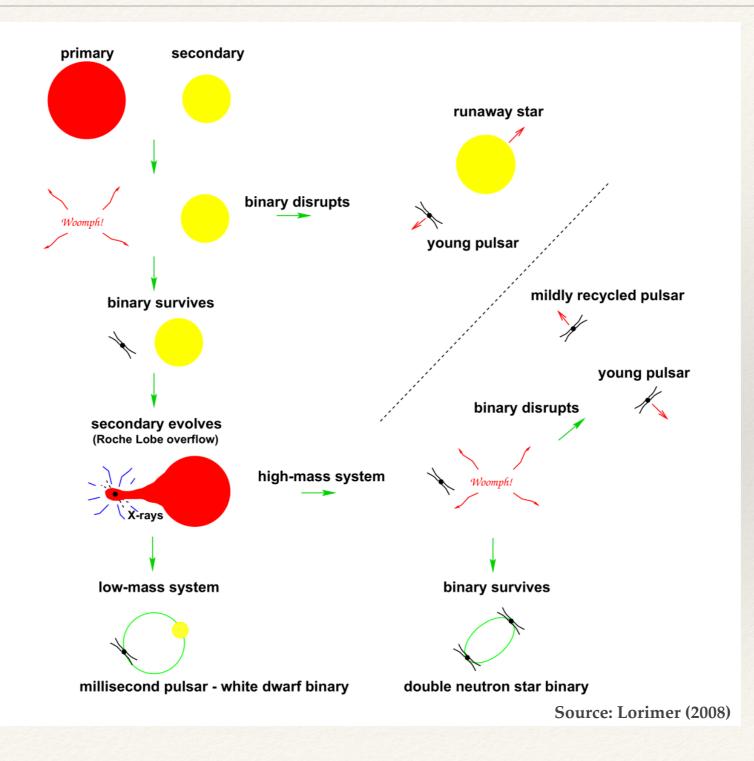
GR predicts: $h_3 = 5.37^{+0.72}_{-0.40}$ µs

Agrees within One Sigma uncertainty

Test 3

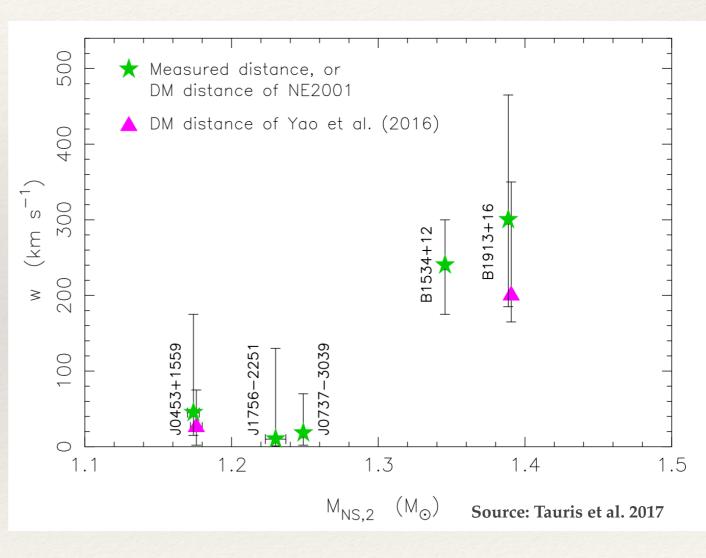
GR predicts: $\varsigma = 0.92^{+0.040}_{-0.025}$

Agrees within One Sigma uncertainty


Source: Cameron et al. 2017

Limitations

- * Unlikely to employ $\dot{\omega} \dot{P}_b$ measurement technique as done for PSR J0737–3039.
- Hard to correct for extrinsic acceleration effects due to large distance ~7.4 kpc (NE 2001)


$$\left(\frac{\dot{P}_b}{P_b}\right)^{obs} = \left(\frac{\dot{P}_b}{P_b}\right)^{GR} + \frac{V_{trans}^2}{cD} + \frac{\Delta a_{radial}}{c}$$

Formation of DNS Systems

Evolutionary History

- * PSR J1757-1854 has a relatively massive young NS companion.
- NS more massive than recycled pulsar. Only other known system showing this property is PSR B1534+12.
- Indicates that a large kick is likely to have been imparted on the young NS at birth.
- Montecarlo simulations show
 values closed to ~400kms⁻¹

Future Prospects

- PSR J1757-1854 is expected to allow for future measurements of Lense-Thirring precession.
- * Large misalignment angle between spin vector of pulsar and orbital angular momentum $\approx 25^{\circ}$

$$\dot{x}_{\rm LT} = x \cot i \left(\frac{\mathrm{d}i}{\mathrm{d}t}\right)_{\rm LT}$$

- Expect a measurement unto 3 sigma within ~7-8 years.
- * Also an ideal system to measure PK parameter which describes relativistic deformation of elliptical orbit.

Future Prospects

* PSR J1757-1854 is also an ideal system to measure PK parameter δ_{θ} which describes relativistic deformation of elliptical orbit.

$$\Delta_{\delta_{\theta}} \simeq -\delta_{\theta} \frac{e^2}{\sqrt{1-e^2}} x \cos \omega \sin u$$

- Has only been measured before in PSR B1913+16 and in and PSR J0737–3039, in both cases with low significances.
- * Equation implies that you also need a high change in ω in order to separate the effect of δ_{θ} from $\gamma \ \Delta_{\gamma} = \gamma \sin u$
- * PSR J1757-1854: $\dot{\omega} \simeq 10.37^{\circ} \,\mathrm{yr}^{-1}$
- * 3 sigma measurement expected in ~7-8 years.

Companion Searches

- * GBT observations done in coherently de-dispersed time search mode.
- * Two methods used to search for companion.
 - * Accelsearch with z = 50
 - Deconvolve the orbit and do presto periodicity search (as described in Martinez et al. 2015)
- * No Detection Yet.

Summary

- PSR J1757-1854 is one of the most relativistic binary pulsar systems detected.
- Has already passed 3 tests of General Relativity with additional precision expected with time.
- * Expected to measure Lense-Thirring precision and δ_{θ} in ~7-8 years.
- * No pulsation from companion detected yet.

Ephemeries

Right ascension, α (J2000) Declination, δ (J2000)	17:57:03.78438(6) 18:54:02.276(7)	
	-18:54:03.376(7)	
Spin period, P (ms)	21.497231890027(7)	
Spin period derivative, \dot{P} (10 ⁻¹⁸)	2.6303(7)	
Timing epoch (MJD) Dispersion measure DM (no m^{-3})	57701	
Dispersion measure, DM $(pc cm^{-3})$	378.203(2)	
Binary model	DDH	
Orbital period, $P_{\rm b}$ (d)	0.18353783587(5)	
Eccentricity, e	0.6058142(10)	
Projected semimajor axis, x (lt-s)	2.237805(5)	
Epoch of periastron, T_0 (MJD)	57700.92599420(5)	
Longitude of periastron, ω (°)	279.3409(4)	
Rate of periastron advance, $\dot{\omega}$ (° yr ⁻¹)	10.3651(2)	
Einstein delay, γ (ms)	3.587(12)	
Orbital period derivative, $\dot{P}_{\rm b}$ (10 ⁻¹²)	-5.3(2)	
Orthometric amplitude, h_3 (µs)	4.6(7)	
Orthometric ratio, ς	0.90(3)	
Mass function, $f(M_{\odot})$	0.35718891(2)	
Total system mass, M (M _{\odot})	2.73295(9)†	
Pulsar mass, $m_{ m p}~({ m M}_{\odot})$	$1.3384(9)^{\dagger}$	
Companion mass, $m_{\rm c}$ (M $_{\odot}$)	$1.3946(9)^{\dagger}$	
Inclination angle, i (°)	$84.0^{+0.4}_{-0.3}$ or $96.0^{+0.3}_{-0.4}$ [†]	
Flux density at 1.4 GHz, S_{1400} (mJy)	0.25(4)	
DM distance, d (kpc)	7.4 (NE2001)	
	19.6 (YMW16)	
Surface magnetic field, $B_{\rm surf}$ (10 ⁹ G)	7.61	
Characteristic age, τ_c (Myr)	130	
Spin-down luminosity, \dot{E} (10 ³⁰ ergs s ⁻¹)	10500	
Time units	TCB	
Solar system ephemeris	DE421	
RMS residual (μ s)	36	
[†] Parameters derived according to the DI		