Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **478**, 2835–2849 (2018) Advance Access publication 2018 May 18

An all-sky survey of circular polarization at 200 MHz

Emil Lenc,^{1,2,3}* Tara Murphy,^{1,2} C. R. Lynch,^{1,2} D. L. Kaplan⁴ and S. N. Zhang⁵

¹Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia
 ²ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), The University of Sydney, NSW 2006, Australia
 ³CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710, Australia
 ⁴Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201, USA
 ⁵School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China

Accepted 2018 May 12. Received 2018 April 26; in original form 2018 February 28

ABSTRACT

We present results from the first all-sky radio survey in circular polarization. The survey uses the Murchison Widefield Array (MWA) to cover 30 900 sq deg, over declinations south of +30° and north of -86° centred at 200 MHz (over a 169–231 MHz band). We achieve a spatial resolution of \sim 3 arcmin and a typical sensitivity of 3.0 mJy PSF⁻¹ over most of the survey region. We demonstrate a new leakage mitigation technique that reduces the leakage from total intensity into circular polarization by an order of magnitude. In a blind survey of the imaged region, we detect 14 pulsars in circular polarization above a 6σ threshold. We also detect six transient sources associated with artificial satellites. A targeted survey of 2376 pulsars within the surveyed region yielded 33 detections above 4σ . Looking specifically at pulsars previously detected at 200 MHz in total intensity, this represents a 35 per cent detection rate. We also conducted a targeted survey of 2400 known flare stars, this resulted in two tentative detections above 4σ . A similar targeted search for 1506 known exoplanets in the field yielded no detections above 4σ . The success of the survey suggests that similar surveys at longer wavelength bands and of deeper fields are warranted.

Key words: radio continuum: planetary systems – (stars:) pulsars: general – plasmas.

GLEAM: Galactic and Extragalactic All-sky MWA survey (Wayth et al. 2015)

Telescope: MWA

Area: 30,900 deg²

Dec: $-86^{\circ} < \delta < +30^{\circ}$

Frequency: 169 – 231 MHz (2 bands)

Resolution: 3' $S_{min} \approx 3 \text{ mJy PSF}^{-1}$ Drift-scan survey

Data products: 2-min snapshots (IQUV) 2187 x 2187px images (25° x 25° FoV) 40kHz spectral resolution frequency-averaged (centred on 200MHz)

Murchison Widefield Array

History

- To date, no all-sky surveys in Stokes V
- Advantages:
- Only a small fraction of sources emit in $V \rightarrow Lower confusion limit^*$
- Continuum observations in Stokes V can help detect pulsars missed due to:
 - complex orbits
 - sub-ms pulsars
 - pulse-broadened (scattered) pulsars
- If those pulsars have steep spectra, low-frequency imaging can help to detect them

* MWA is confusion-limited

Sources of V

Astrophysical processes that generate V:

- Synchrotron V is very weak
- Propagation effects:
- scintillation
- refraction near black holes
- propagation of lin. pol. waves through relativistic plasma

- Pulsars
- AGN have < 0.5% V
- CMI: electron—synchrotron maser instability (planets) e.g. Jupiter is known to have V/I ~ 1% @ 3.24 GHz (seagutst 1969)

Leakage

All-sky observations in Stokes V suffer from instrumental leakage:

 $I \rightarrow Q$ (strongest leakage) $I \rightarrow U \rightarrow V (\sim 5\% \text{ level})$ $\begin{bmatrix} Q \\ U \end{bmatrix} =$ $|X|^2 - |Y|^2$ $2 \operatorname{Re}(X^* Y)$ X and Y are ideally 'orthogonal' $2 \operatorname{Im}(X^* Y)$ Leakage from U to V results from uncorrected X–Y phase offsets

Leaked signal from I can result in false detections in V

- To correct leakage in V:

• The leakage was modelled with a quadratic surface across the beam • Fitted surface was used to scale Stokes I map and subtract it from V map • Based on lin. pol. sources, $U \rightarrow V$ leakage was estimated to be 20–30%* * this is not a problem for high-RM sources (FR depolarisation)

• Assume all sources are unpolarised • Any measured polarisation is leakage

1,779 GLEAM sources were used to check flux scale and directional leakage @ 200 MHz:

- Largest errors on the corrected flux towards high δ and towards GC
- RMS of leakage $(I \rightarrow V)$ after correction ~ 0.12%
- Leakage reduced by factor ~10, after correction

Leakage

Mosaics

- Used SWARP to create mosaics from the 2-min snapshots
- ZEA (zenith-equal-angle projection)
- Averaged all frequencies to create Stokes I, V maps (uncorrected & corrected)

Survey noise: $\langle \sigma_V \rangle \sim 3 \text{ mJy/PSF} (2x-5x \text{ better than } G_L E \land M^*)$

PSRs J1157–6224 & Vela were detected in both maps

Results (Blind Search)

Flagged all pixels with $S_{200} \ge 6 \sigma_{\text{noise}}$ (σ from noise map)

- -63 detections ($\geq 6\sigma$):
 - 41 bright radio galaxies
 - I5 known pulsars (incl. Crab) –
 - | Jupiter
 - 15 trannies which turned out to be artificial satellites

- Rejected the Crab nebula and all but 3 AGN due to enhanced brightness/leakage

Astrometric uncertainties: • 0.3, for 6σ sources • l', for ionosphere

Pulsars (Blind Search)

14 PSRs

Source	V ₂₀₀ (mJy)	SNR
PSR J0034-0721	+30.5	13.9
PSR J0437-4715	+135.4	24.6
PSR J0630-2834	-20.7	12.9
PSR J0738-4042	+14.0	7.4
PSR J0742-2822	-15.3	9.0
PSR J0745-5353	-18.7	9.2
PSR J0835-4510	+243.6	32.7
PSR J1136+1551	-159.7	18.7
PSR J1157-6224	+50.8	11.3
PSR J1327-6222	- 33.8	7.2
PSR J1453-6413	+57.0	11.2
PSR J1651-4246	-213.9	22.0
PSR J1932+1059	- 58.3	8.3
PSR J2048-1616	+17.6	9.8

incl. some classical ones

nearest (& dearest?) MSP

Vela (+V) - BII33+I6 (-V)

BI929+10

Properties:

- N_{+V} / N_{-V} ~ I
- Vela SNR > 30σ
- PSR J0745–5353 was detected in V but not in I

• V / I > 3% – for overlapping sample, LOFAR shows similar V/I and signof(V) to MWA

AGN (Blind Search)

3C 139.2 : Detected in region with poor sensitivity: likely a false detection

PMN J0257–2433, PKS J0006–4235:

- offset from their Stokes I positions by >2' -
- likely associated with AGN hotspot that are (i) linearly polarised and (ii) have low RM
 - \rightarrow they leak U into V

Jupit (Blind Search)

- Known to exhibit V/I ~ 1% @ 3.24 GHz
- MWA measured V/I ~ 3.1% @ 200 MHz (7.3σ significance) perhaps an overestimate

Artificial Satellites

- Satellites can reflect FM-radio signals
- However, the detections were at 200 MHz \gg FM (87.5 108 MHz) **Conclusion:** the signals were direct satellite transmissions

Pulsars (Targeted Search)

- 2,376 PSRs within surveyed sky (total = 2,659)
- A lower 4σ threshold was used for the targeted search

Results:

- -Total number of detections: 32 PSRs
- 18/32 not seen in the Blind Search
- 3 PSRs (J0206-4028, J0828-3417 and J1900-2600) opposite signof(V) compared to higher frequencies
- -21 of the 60 pulsars detected by Murphy et al. (2017) in Stokes I (>100-200 mJy) were detected in V
- II PSRs were detected in V but not I \rightarrow Stokes V surveys can help discover PSRs

- Planetary auroras can generate bright CMI emission
- CMI frequency tied to B-field strength

 \Rightarrow we can measure B-field^{*} and probe planet's interior composition

planet's orbit

*To date, no unambiguous detections of exoplanetary B-fields

CMI emission: $f_c = \frac{eB_p}{2\pi m_e} \approx (2.8 \text{ MHz})B_p$

Exoplanets (Targeted Search)

 \Rightarrow time/frequency variations of the radio emission can constrain B-field geometry and

e.g. B_p for Proxima Cen b ~ 1 G \Rightarrow f_c ~ 3 MHz (ionosphere absorbs <10 MHz)

- Planetary auroras can generate bright CMI emission
- CMI frequency tied to B-field strength

 \Rightarrow we can measure B-field^{*} and probe planet's interior composition

planet's orbit

*To date, no unambiguous detections of exoplanetary B-fields

CMI emission: $f_c = \frac{eB_p}{2\pi m_o} \approx (2.8 \text{ MHz})B_p$

e.g. B_p for Proxima Cen b ~ 1 G \Rightarrow f_c ~ 3 MHz (ionosphere absorbs <10 MHz)

In the 1960s and 1970s,

- Several magnetically active M stars were observed with single-dish telescopes to produce 0.03–0.8 flares/hr @ 90–300 MHz with S=0.8 –20 Jy
- No detections since (see figure for possible explanation)

Exoplanets (Targeted Search)

 \Rightarrow time/frequency variations of the radio emission can constrain B-field geometry and

Exoplanets (Targeted Search)

Targeted search of 1,506 exos:

• Proxima Cen b and HD 34445 were found to have 4σ Stokes V emission

• The emission is real, but probably associated with the host stars

Sh**! They've found us!

Summary

- All-sky Stokes V survey with the MWA (using GLEAM data)
- Polarisation-leakage mitigation for MWA (leakage reduced by factor 10 = 0.72%)
- Detection of 32 PSRs, 6 satellites, 2 flare stars
- 35% of PSRs were detected in both V and I
- II PSRs detected in V but not in I (due to sensitivity / confusion)
- Detection of transients whose signof(V) flips will require integrations shorter that the flippin' time-scale
- In future, the extended MWA will have reduced sidelobes
- The leakage mitigation should be applicable in the SKA: it will require that

- (i) the leakage is constant with time
- (ii) good images over short integrations can be made

