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Observations of some further Pulsed
Radio Sources

by

J. D. H. PILKINGTON

?.. JHEB&EH Details are now given of three of the four pulsating radic sources
T. W. COLE discovered at Cambridge.

Mullard Radio Astronomy Observatory,
Cavendish Laboratory,
University of Cambridge

IN a recont communication! an account was given of the
discovery of a new clasa of radio souree characterized by
the emission of short pulses of radiation having an ex-
tremely constant repetition frequeney. The records on
which the souree was first detected wore taken during a
survey for the investigation of compact radio sources
uging the method of interplanetary semtillation, Follow-
ng the recognition of the first pulsed source the survey
records, which covered the region — 08 <8< 44, were
examined for evidence of further similar sources. Where
those records indicatod that the intensity fluctuations of
a particular source wers more impulsive than those caused
by interplanetary scintillation, further observations were
made. These led to the discovery of three additional
pulsed sources. Even though each arca of sky was observed
on about twenty separate occasions dmmg thiz survey,
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:«lmly‘ showtng the Lrregalsr varfmﬂom of intensity from pulse ta

pulae, * The deflexions change glgn ag the soures moves through the

nierferenee pattern of the acrisl. Recording time eonstant 018,
the large day-to-day variations of fux density [rom the
known sources indicate that this programme should not
be regarded as an exhsustive search ol the entire region,
and observations are eontinuing.
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ABSTRACT

Observations at Jodrell Bank are reported of very fine modulations of the dynamic spectra of
interstellar scintillation (ISS) from pulsar PSR BOB34+06. These fringes have a period in radio
frequency of 45kHz, which is about 100 times smaller than the largest bandwidth due to
normal ISS of the pulsar at the central observing frequency of 408 MHz. Analysis shows good
consistency with a model in which two ray-bundles intersect and interfere creating the fringes,
from which a 22-ps delay difference is inferred. The separation between the bundles is greater
than 4 mas which is more than 10 times their angular diameter. Such a large ratio cannot be due
to an inner scale that cuts off the pervasive turbulent density spectrum responsible for the
diffractive angular broadening.

The fringing was observed on four occasions over 30d and so is similar to the ‘extreme
scattering events” observed in other sources, 3 au is the scale inferred, and various possible
structures in the interstellar plasma density are considered. A stochastic refraction model is
proposed, in which many isolated regions in a layer of parsec thickness randomly build up
enhanced angles of refraction. Normally neighbouring ray-paths do not intersect. However,
occasionally their angles are large enough to cause interference and the associated fringes. A
specific mode! is proposed in which the ionized refracting layer surrounds a warm H1 cloud,
with anisotropic density irregularities of 0.25 electron em™, which could be in equilibrium
with the normal interstellar pressure.

Key words: plasmas — scattering — mrbulence — pulsars: individual: PSR BO834+06 - ISM:
general.
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Figure 1. (a) Dynamic spectrum of PSR B0834-+06 on 1984 September 25, Pulse flux averaged over 29 sand 19.5 kHz is plotted as a grey-scale with dot density
linearly proportional to flux density, ranging from white at 6 per cent of the peak flux to black at 75 per cent of the peak flux; values outside these limits saturate
the display. The fine modulations (fringes with 45-kHz period) can best be seen by tipping the page away and looking along the arrowed direction.
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Figure 1. (a) Dynamic spectrum of PSR B0834-+06 on 1984 September 25. Pulse flux averaged over 29 s and 19.5 kHz is plotted as a grey-scale with dot density

linearly proportional to flux density, ranging from white at 6 per cent of the peak flux to black at 75 per cent of the peak flux; values outside these limits saturate
the display. The fine modulations (fringes with 45-kHz period) can best be seen by tipping the page away and looking along the arrowed direction,
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ABSTRACT
Pulsar dynamic spectra sometimes show organized interference pattemns: these patterns have — 7,¢ T - (k dls s-T
been shown to have power spectra that often take the form of parabolic arcs, or sequences Eobs — dx (& ( ) ds € ( / ) E(gj
of inverted parabolic arclets whose apexes themselves follow a parabolic locus. Here, we lens source

consider the interpretation of these arc and arclet features. We give a statistical formulation
for the appearance of the power spectra. based on the stationary phase approximation to the
Fresnel -Kirchoff integral. We present a simple analytic result for the power spectrum expected
in the case of highly elongated images and a single-integral analytic formulation appropriate
to the case of axisymmetric images. Our results are illustrated in both the ensemble-average
and snapshot regimes. Highly anisotropic scattering appears to be an important ingredient in
the formation of the observed arclets.

Key words: pulsars: general — ISM: general.
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Figure 9. The secondary spectrum of PSR B0834-+06 observed at 321 MHz
on 2004 January 8 with the Arecibo telescope. The grey-scale is logarithmic
in relative power, with white being set 3 dB above the noise fioor and black
being set at 5 dB below maximum power. The arclet pattern seen prominently
on the right hand side of the plot persisted for more than 25 d during 2004
January and moved systematically up and to the right along the guiding
parabolic arc shown by the dashed line. The axis scaling is described in the
text and can be compared directly with the plots of model data. The axes in
this plot are scaled in the same way as in Fig. 8, but using the values D‘.7 =
0.72kpe, vp = 175 km s~ f=033,and 4, =0.72 mas.
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ABSTRACT

The dynamic spectrum of aradio pulsar is an in-line digital hologram of the ionized interstellar
medium. It has previously been demonstrated that such holograms permit image reconstruc-
tion, in the sense that one can determine an approximation to the complex electric field values
as a function of Doppler shift and delay, but to date the quality of the reconstructions has been
poor. Here we report a substantial improvement in the method which we have achieved by
simultaneous optimization of the thousands of coefficients that describe the electric field. For
our test spectrum of PSR BOB344+06 we find that the model provides an accurate representa-
tion of the data over the full 63 dB dynamic range of the observations: residual differences
between model and data are noise like. The advent of interstellar holography enables detailed
quantitative investigation of the imterstellar radio-wave propagation paths for a given pulsar
at each epoch of observation. We illustrate this using our test data which show the scatter-
ing materal to be structured and highly anisotropic. The temporal response of the medium
exhibits a scattering tail which extends to beyond 100 ps, and the centroid of the pulse at
this frequency and this epoch of observation is delayed by approximately 15 us as a result of
multipath propagation in the interstellar medium.

Key words: scattering — turbulence — techniques: interferometric — pulsars: general — pulsars:
individual: BOB344+06 — ISM: structure.
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Figure 5. Theinterstellar propagation delay, A(r) (solid line), as determined
from the holographic image shown in Fig. 3 with low amplitude coefficients
(|liig] < 0.004) set to zero. Also shown is the (unweighted) mean delay,
(A) = 15.2 us (dashed line), for the observation. The dotted line shows a
weighted mean (14.8 ps), with the weight for each time sample being equal
to the intrinsic pulsar flux, f. as determined by the modelling procedure
described in Section 2 of this paper.
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If pulsar moves, scintillation pattern changes slightly

- Compare scintillation across pulse phase, look for positional shifts
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Figure 6. Pulsar motion projected along scattering axis. The horizontal axis
is the time difference and the vertical axis is the apparent motion shift along
the scattering axis, scaled to a Doppler frequency of —15mHz. The changes
are always small. The error is about 1/1000th of a radian, which reflects the
extremely high S/N of the measurement.
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Figure 2. The secondary spectra of PSR BOR3 406 as observed from Green Bank (Fig. 2a), Arecibo (Fi b) and Jodrell Bank (Fig.

2c). The colour scale corresponds to the base 10 log of the power (in arbitrary units). Note that the scale varies between stations.
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Figure 8. The phases (in radians) of the visil TOES-$PECtEa, S'y{'r fo). for the Green Bank- Arec (left), Jodrell Bank-Arecibo
(center) and Green Bank-Jodrell Bank (right) basclines. Here, ¢y s = 25(8; +05) b, so that along any inverted arclet the phase is large
at low |fip|. when the two images interfering are close together on the sky. and small at large | fp|. when the two images interfering are
on opp: sides of the pulsar, but roughly the same angular distance from the pulsar. There is a feature at 1 ms that does not follow
the phase trend of the main parabolic feature, indicating that it is from a scattering screen with a different orientation, distance, and for
velocity than that responsible for the main parabolic feature, as determined by Brisken et al. (2010). These are the quantities used in
the analysis of PSR BO8344-06 by Brisken et al. (2010) and the left-most panel is a reproduction of their Fig. 1.
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Figure 4. The phases (in radians) of the intensity crass sscondary spectra between Green Bank and Arecibo (left), Jodrell Bank and
Areciba (center), and Green Bank and Jodrell Bank (right). Here, we expect a linear gradient in phase with fp if the scattering is due to
asingle screen. (See equation (11).) We see that the main parabolic structure does follow a phase gradient. but there is another feature
at 1 ms, that does not follow this gradient in the JB-AR and GB-JB spectra. This suggests that it is not from the same scattering screen
as the main parabolic arc, consistent with the analysis by Brisken et al. (2010).
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Figure 2. The secondary spectra of PSR BOS34406 as observed from Green Bank (Fig. 2a), Arecibo (Fig. 2b) and Jodrell Bank (Fig.
2¢). The colour scale corresponds to the base 10 log of the power (in arbitrary units). Note that the scale varies between stations.
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Figure 3. The phases (in radians) of the visibility cross-spectra, Sy(r. fip), for the Green Bank- Arecibo (left), Jodrell Bank-Arecibo
(center) and Green Bank-Jodrell Bank (right) basclines. Here, ¢y jx = 25(0; +8,) b, so that along any inverted arclet the phase s large
at low |fip|. when the two images interfering are close together on the sky. and small at large | fp|. when the two images interfering are
on opposite sides of the pulsar. but roughly the same angular distance from the pulsar. There is a feature at 1 ms that does not follow
the phase trend of the main parabolic feature, indicating that it & from a scattering screen with a different orientation, distance, and/or
velocity than that responsible for the main parabolic feature, as determined by Brisken et al. (2010). These are the quantities used in
the analysis of PSR BO8344-06 by Brisken et al. (2010) and the left-most panel is a reproduction of their Fig. 1.
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Figure 4. The phases (in radians) of the intensity crass sscondary spectra between Green Bank and Arecibo (left), Jodrell Bank and
Areciba (center), and Green Bank and Jodrell Bank (right). Here, we expect a linear gradient in phase with fp if the scattering is due to
asingle screen. (See equation (11).) We see that the main parabolic structure does follow a phase gradient. but there is another feature
at 1 ms, that does not follow this gradient in the JB-AR and GB-JB spectra. This suggests that it is not from the same scattering screen
as the main parabolic arc, consistent with the analysis by Brisken et al. (2010).
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Figure 8. The left-hand panel shows the histogram of values of s (measured with the AR-GB/AR-JB baseline pair) for pixels where
@), < 1 mas. Fitting a Gaussian between s = 0.2 and s = 0.5, we find s = 0.35 = 0.03. The right-hand panel shows the value of s = 1 - ‘(’F';"
s
calculated at each pixel in the secondary spectrum using the AR-GB/AR-JB baseline pair. An alpha-mask that is log-spaced in the L0
absolute power of the visibility secondary cross-spectrum has been applied to allow points of interest to stand out. From this panel, it is
obvious that the 1-ms feature is from a different screen than the main parabola.
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Figure 9. The left-hand panel shows the histogram of values of Vg (measured with the AR-GB/AR-JB baseline pair) for pixels where
6. < 1 mas. Fitting a Gaussian between 200 ki /s and 350 km/s, we find Vg = 300 £ 30 km/s. The right-hand panel shows the value of
Ver| calculated at each pixel in the secondary spectrum (using the AR-GB/AR-JB) baseline pair). An alpha-mask that is log-spaced in
the absolute power of the visibility secondary cross-spectrum has been applied to allow points of interest to stand out.
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