Differences

This shows you the differences between two versions of the page.

Link to this comparison view

talksposters:spsearch [2024/04/29 10:55]
lspitler
talksposters:spsearch [2024/04/29 11:18] (current)
lspitler
Line 24: Line 24:
 Example command: Example command:
  
-''waterfaller.py %%--%%show-ts %%--%%show-spec %%--%%colour-map='viridis' -d 57 -T 100 -t 5 %%--%%downsamp=8 %%--%%scaleindep MY_DATA.fil''+''waterfaller.py %%--%%show-ts %%--%%show-spec %%--%%colour-map='viridis' -d 57 -T 100 -t 5 %%--%%downsamp=8 %%--%%scaleindep MY_DATA.fil''
  
 Parameters to play around with: Parameters to play around with:
Line 38: Line 38:
 Example command: Example command:
  
-''rfifind -o mask_file_name -time 1.0 -zapchan N:N MY_DATA.fil''+''rfifind -o mask_file_name -time 1.0 -zapchan N:N MY_DATA.fil''
  
 Parameters to play around with: Parameters to play around with:
Line 51: Line 51:
 Original mask: mask_file_name_rfifind.mask Original mask: mask_file_name_rfifind.mask
  
-''rfifind -o mask_file_name -nocompute -freqsig 8 -mask mask_file_name_rfifind.mask MY_DATA.fil''+''rfifind -o mask_file_name -nocompute -freqsig 8 -mask mask_file_name_rfifind.mask MY_DATA.fil''
  
 === Step 3: generate dedispersed time series === === Step 3: generate dedispersed time series ===
 +
 +This command assumes the data are for B0355+54 - change the DM range accordingly if using a different test pulsar. 
  
 This command can be used to generate a single dedipsersed time series by setting -numdms 1. Having dedispered time series over a range around the true value is useful for in Step 4.  This command can be used to generate a single dedipsersed time series by setting -numdms 1. Having dedispered time series over a range around the true value is useful for in Step 4. 
  
-''prepsubband -nobary -lodm 52.4 -dmstep 0.5 -numdms 20 -clip 0 -downsamp 1 -mask mask_file_name_rfifind.mask -o my_ts MY_DATA.fil''+''prepsubband -nobary -lodm 52.4 -dmstep 0.5 -numdms 20 -clip 0 -downsamp 1 -mask mask_file_name_rfifind.mask -o my_ts MY_DATA.fil''
  
 Variations: Variations:
Line 65: Line 67:
   * Run with clipping to see if this changes the time series   * Run with clipping to see if this changes the time series
  
-Manually inspect the time series with ''exploredat''. +Manually inspect the time series
-   + 
 +''exploredat my_ts.dat'' 
   * Can you see bright pulses?   * Can you see bright pulses?
   * Note the slowly varying   * Note the slowly varying
   * If you've applied an RFIfind mask, what impact does this have on the time series?   * If you've applied an RFIfind mask, what impact does this have on the time series?
 +
 +=== Step 4: generate single pulse candidates ===
 +
 +''> single_pulse_search.py -m 30 -t 6 -b *.dat''
 +
 +Parameters to vary:
 +  * Turn on bad block flagging
 +  * Use different detrend chunksizes 
 +
 +Look at SP diagnostic plot: my_ts_singlepulse.ps
 +
 +Recreate this plot with a different threshold or time range:
 +
 +''> single_pulse_search.py -m 30 -t 8 -s 0 -e 120 -b *.singlepulse''
 +
 +=== Step 5: machine learning classifier ===
 +
 +To be done...
  
 
talksposters/spsearch.1714380948.txt.gz ยท Last modified: 2024/04/29 10:55 by lspitler     Back to top